Description: For sets, binary relation on the class of all redundant sets ( brredunds ) is equivalent to satisfying the redundancy predicate ( df-redund ). (Contributed by Peter Mazsa, 25-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brredundsredund | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 Redunds 〈 𝐵 , 𝐶 〉 ↔ 𝐴 Redund 〈 𝐵 , 𝐶 〉 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | brredunds | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 Redunds 〈 𝐵 , 𝐶 〉 ↔ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) ) ) | |
| 2 | df-redund | ⊢ ( 𝐴 Redund 〈 𝐵 , 𝐶 〉 ↔ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) ) | |
| 3 | 1 2 | bitr4di | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 Redunds 〈 𝐵 , 𝐶 〉 ↔ 𝐴 Redund 〈 𝐵 , 𝐶 〉 ) ) |