Metamath Proof Explorer


Theorem brredundsredund

Description: For sets, binary relation on the class of all redundant sets ( brredunds ) is equivalent to satisfying the redundancy predicate ( df-redund ). (Contributed by Peter Mazsa, 25-Oct-2022)

Ref Expression
Assertion brredundsredund ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( 𝐴 Redunds ⟨ 𝐵 , 𝐶 ⟩ ↔ 𝐴 Redund ⟨ 𝐵 , 𝐶 ⟩ ) )

Proof

Step Hyp Ref Expression
1 brredunds ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( 𝐴 Redunds ⟨ 𝐵 , 𝐶 ⟩ ↔ ( 𝐴𝐵 ∧ ( 𝐴𝐶 ) = ( 𝐵𝐶 ) ) ) )
2 df-redund ( 𝐴 Redund ⟨ 𝐵 , 𝐶 ⟩ ↔ ( 𝐴𝐵 ∧ ( 𝐴𝐶 ) = ( 𝐵𝐶 ) ) )
3 1 2 bitr4di ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → ( 𝐴 Redunds ⟨ 𝐵 , 𝐶 ⟩ ↔ 𝐴 Redund ⟨ 𝐵 , 𝐶 ⟩ ) )