| Step |
Hyp |
Ref |
Expression |
| 1 |
|
redundss3.1 |
⊢ 𝐷 ⊆ 𝐶 |
| 2 |
|
ineq1 |
⊢ ( ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) → ( ( 𝐴 ∩ 𝐶 ) ∩ 𝐷 ) = ( ( 𝐵 ∩ 𝐶 ) ∩ 𝐷 ) ) |
| 3 |
|
dfss |
⊢ ( 𝐷 ⊆ 𝐶 ↔ 𝐷 = ( 𝐷 ∩ 𝐶 ) ) |
| 4 |
1 3
|
mpbi |
⊢ 𝐷 = ( 𝐷 ∩ 𝐶 ) |
| 5 |
|
incom |
⊢ ( 𝐷 ∩ 𝐶 ) = ( 𝐶 ∩ 𝐷 ) |
| 6 |
4 5
|
eqtri |
⊢ 𝐷 = ( 𝐶 ∩ 𝐷 ) |
| 7 |
6
|
ineq2i |
⊢ ( 𝐴 ∩ 𝐷 ) = ( 𝐴 ∩ ( 𝐶 ∩ 𝐷 ) ) |
| 8 |
|
inass |
⊢ ( ( 𝐴 ∩ 𝐶 ) ∩ 𝐷 ) = ( 𝐴 ∩ ( 𝐶 ∩ 𝐷 ) ) |
| 9 |
7 8
|
eqtr4i |
⊢ ( 𝐴 ∩ 𝐷 ) = ( ( 𝐴 ∩ 𝐶 ) ∩ 𝐷 ) |
| 10 |
6
|
ineq2i |
⊢ ( 𝐵 ∩ 𝐷 ) = ( 𝐵 ∩ ( 𝐶 ∩ 𝐷 ) ) |
| 11 |
|
inass |
⊢ ( ( 𝐵 ∩ 𝐶 ) ∩ 𝐷 ) = ( 𝐵 ∩ ( 𝐶 ∩ 𝐷 ) ) |
| 12 |
10 11
|
eqtr4i |
⊢ ( 𝐵 ∩ 𝐷 ) = ( ( 𝐵 ∩ 𝐶 ) ∩ 𝐷 ) |
| 13 |
2 9 12
|
3eqtr4g |
⊢ ( ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) → ( 𝐴 ∩ 𝐷 ) = ( 𝐵 ∩ 𝐷 ) ) |
| 14 |
13
|
anim2i |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) → ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ∩ 𝐷 ) = ( 𝐵 ∩ 𝐷 ) ) ) |
| 15 |
|
df-redund |
⊢ ( 𝐴 Redund 〈 𝐵 , 𝐶 〉 ↔ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) ) |
| 16 |
|
df-redund |
⊢ ( 𝐴 Redund 〈 𝐵 , 𝐷 〉 ↔ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ∩ 𝐷 ) = ( 𝐵 ∩ 𝐷 ) ) ) |
| 17 |
14 15 16
|
3imtr4i |
⊢ ( 𝐴 Redund 〈 𝐵 , 𝐶 〉 → 𝐴 Redund 〈 𝐵 , 𝐷 〉 ) |