| Step | Hyp | Ref | Expression | 
						
							| 1 |  | redundss3.1 | ⊢ 𝐷  ⊆  𝐶 | 
						
							| 2 |  | ineq1 | ⊢ ( ( 𝐴  ∩  𝐶 )  =  ( 𝐵  ∩  𝐶 )  →  ( ( 𝐴  ∩  𝐶 )  ∩  𝐷 )  =  ( ( 𝐵  ∩  𝐶 )  ∩  𝐷 ) ) | 
						
							| 3 |  | dfss | ⊢ ( 𝐷  ⊆  𝐶  ↔  𝐷  =  ( 𝐷  ∩  𝐶 ) ) | 
						
							| 4 | 1 3 | mpbi | ⊢ 𝐷  =  ( 𝐷  ∩  𝐶 ) | 
						
							| 5 |  | incom | ⊢ ( 𝐷  ∩  𝐶 )  =  ( 𝐶  ∩  𝐷 ) | 
						
							| 6 | 4 5 | eqtri | ⊢ 𝐷  =  ( 𝐶  ∩  𝐷 ) | 
						
							| 7 | 6 | ineq2i | ⊢ ( 𝐴  ∩  𝐷 )  =  ( 𝐴  ∩  ( 𝐶  ∩  𝐷 ) ) | 
						
							| 8 |  | inass | ⊢ ( ( 𝐴  ∩  𝐶 )  ∩  𝐷 )  =  ( 𝐴  ∩  ( 𝐶  ∩  𝐷 ) ) | 
						
							| 9 | 7 8 | eqtr4i | ⊢ ( 𝐴  ∩  𝐷 )  =  ( ( 𝐴  ∩  𝐶 )  ∩  𝐷 ) | 
						
							| 10 | 6 | ineq2i | ⊢ ( 𝐵  ∩  𝐷 )  =  ( 𝐵  ∩  ( 𝐶  ∩  𝐷 ) ) | 
						
							| 11 |  | inass | ⊢ ( ( 𝐵  ∩  𝐶 )  ∩  𝐷 )  =  ( 𝐵  ∩  ( 𝐶  ∩  𝐷 ) ) | 
						
							| 12 | 10 11 | eqtr4i | ⊢ ( 𝐵  ∩  𝐷 )  =  ( ( 𝐵  ∩  𝐶 )  ∩  𝐷 ) | 
						
							| 13 | 2 9 12 | 3eqtr4g | ⊢ ( ( 𝐴  ∩  𝐶 )  =  ( 𝐵  ∩  𝐶 )  →  ( 𝐴  ∩  𝐷 )  =  ( 𝐵  ∩  𝐷 ) ) | 
						
							| 14 | 13 | anim2i | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  ( 𝐴  ∩  𝐶 )  =  ( 𝐵  ∩  𝐶 ) )  →  ( 𝐴  ⊆  𝐵  ∧  ( 𝐴  ∩  𝐷 )  =  ( 𝐵  ∩  𝐷 ) ) ) | 
						
							| 15 |  | df-redund | ⊢ ( 𝐴  Redund  〈 𝐵 ,  𝐶 〉  ↔  ( 𝐴  ⊆  𝐵  ∧  ( 𝐴  ∩  𝐶 )  =  ( 𝐵  ∩  𝐶 ) ) ) | 
						
							| 16 |  | df-redund | ⊢ ( 𝐴  Redund  〈 𝐵 ,  𝐷 〉  ↔  ( 𝐴  ⊆  𝐵  ∧  ( 𝐴  ∩  𝐷 )  =  ( 𝐵  ∩  𝐷 ) ) ) | 
						
							| 17 | 14 15 16 | 3imtr4i | ⊢ ( 𝐴  Redund  〈 𝐵 ,  𝐶 〉  →  𝐴  Redund  〈 𝐵 ,  𝐷 〉 ) |