| Step | Hyp | Ref | Expression | 
						
							| 1 |  | redundss3.1 |  |-  D C_ C | 
						
							| 2 |  | ineq1 |  |-  ( ( A i^i C ) = ( B i^i C ) -> ( ( A i^i C ) i^i D ) = ( ( B i^i C ) i^i D ) ) | 
						
							| 3 |  | dfss |  |-  ( D C_ C <-> D = ( D i^i C ) ) | 
						
							| 4 | 1 3 | mpbi |  |-  D = ( D i^i C ) | 
						
							| 5 |  | incom |  |-  ( D i^i C ) = ( C i^i D ) | 
						
							| 6 | 4 5 | eqtri |  |-  D = ( C i^i D ) | 
						
							| 7 | 6 | ineq2i |  |-  ( A i^i D ) = ( A i^i ( C i^i D ) ) | 
						
							| 8 |  | inass |  |-  ( ( A i^i C ) i^i D ) = ( A i^i ( C i^i D ) ) | 
						
							| 9 | 7 8 | eqtr4i |  |-  ( A i^i D ) = ( ( A i^i C ) i^i D ) | 
						
							| 10 | 6 | ineq2i |  |-  ( B i^i D ) = ( B i^i ( C i^i D ) ) | 
						
							| 11 |  | inass |  |-  ( ( B i^i C ) i^i D ) = ( B i^i ( C i^i D ) ) | 
						
							| 12 | 10 11 | eqtr4i |  |-  ( B i^i D ) = ( ( B i^i C ) i^i D ) | 
						
							| 13 | 2 9 12 | 3eqtr4g |  |-  ( ( A i^i C ) = ( B i^i C ) -> ( A i^i D ) = ( B i^i D ) ) | 
						
							| 14 | 13 | anim2i |  |-  ( ( A C_ B /\ ( A i^i C ) = ( B i^i C ) ) -> ( A C_ B /\ ( A i^i D ) = ( B i^i D ) ) ) | 
						
							| 15 |  | df-redund |  |-  ( A Redund <. B , C >. <-> ( A C_ B /\ ( A i^i C ) = ( B i^i C ) ) ) | 
						
							| 16 |  | df-redund |  |-  ( A Redund <. B , D >. <-> ( A C_ B /\ ( A i^i D ) = ( B i^i D ) ) ) | 
						
							| 17 | 14 15 16 | 3imtr4i |  |-  ( A Redund <. B , C >. -> A Redund <. B , D >. ) |