| Step |
Hyp |
Ref |
Expression |
| 1 |
|
redundss3.1 |
|- D C_ C |
| 2 |
|
ineq1 |
|- ( ( A i^i C ) = ( B i^i C ) -> ( ( A i^i C ) i^i D ) = ( ( B i^i C ) i^i D ) ) |
| 3 |
|
dfss |
|- ( D C_ C <-> D = ( D i^i C ) ) |
| 4 |
1 3
|
mpbi |
|- D = ( D i^i C ) |
| 5 |
|
incom |
|- ( D i^i C ) = ( C i^i D ) |
| 6 |
4 5
|
eqtri |
|- D = ( C i^i D ) |
| 7 |
6
|
ineq2i |
|- ( A i^i D ) = ( A i^i ( C i^i D ) ) |
| 8 |
|
inass |
|- ( ( A i^i C ) i^i D ) = ( A i^i ( C i^i D ) ) |
| 9 |
7 8
|
eqtr4i |
|- ( A i^i D ) = ( ( A i^i C ) i^i D ) |
| 10 |
6
|
ineq2i |
|- ( B i^i D ) = ( B i^i ( C i^i D ) ) |
| 11 |
|
inass |
|- ( ( B i^i C ) i^i D ) = ( B i^i ( C i^i D ) ) |
| 12 |
10 11
|
eqtr4i |
|- ( B i^i D ) = ( ( B i^i C ) i^i D ) |
| 13 |
2 9 12
|
3eqtr4g |
|- ( ( A i^i C ) = ( B i^i C ) -> ( A i^i D ) = ( B i^i D ) ) |
| 14 |
13
|
anim2i |
|- ( ( A C_ B /\ ( A i^i C ) = ( B i^i C ) ) -> ( A C_ B /\ ( A i^i D ) = ( B i^i D ) ) ) |
| 15 |
|
df-redund |
|- ( A Redund <. B , C >. <-> ( A C_ B /\ ( A i^i C ) = ( B i^i C ) ) ) |
| 16 |
|
df-redund |
|- ( A Redund <. B , D >. <-> ( A C_ B /\ ( A i^i D ) = ( B i^i D ) ) ) |
| 17 |
14 15 16
|
3imtr4i |
|- ( A Redund <. B , C >. -> A Redund <. B , D >. ) |