Description: Define the redundancy predicate. Read: A is redundant with respect to B in C . For sets, binary relation on the class of all redundant sets ( brredunds ) is equivalent to satisfying the redundancy predicate. (Contributed by Peter Mazsa, 23-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-redund | |- ( A Redund <. B , C >. <-> ( A C_ B /\ ( A i^i C ) = ( B i^i C ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cA | |- A | |
| 1 | cB | |- B | |
| 2 | cC | |- C | |
| 3 | 0 1 2 | wredund | |- A Redund <. B , C >. | 
| 4 | 0 1 | wss | |- A C_ B | 
| 5 | 0 2 | cin | |- ( A i^i C ) | 
| 6 | 1 2 | cin | |- ( B i^i C ) | 
| 7 | 5 6 | wceq | |- ( A i^i C ) = ( B i^i C ) | 
| 8 | 4 7 | wa | |- ( A C_ B /\ ( A i^i C ) = ( B i^i C ) ) | 
| 9 | 3 8 | wb | |- ( A Redund <. B , C >. <-> ( A C_ B /\ ( A i^i C ) = ( B i^i C ) ) ) |