Metamath Proof Explorer


Definition df-redund

Description: Define the redundancy predicate. Read: A is redundant with respect to B in C . For sets, binary relation on the class of all redundant sets ( brredunds ) is equivalent to satisfying the redundancy predicate. (Contributed by Peter Mazsa, 23-Oct-2022)

Ref Expression
Assertion df-redund
|- ( A Redund <. B , C >. <-> ( A C_ B /\ ( A i^i C ) = ( B i^i C ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 cB
 |-  B
2 cC
 |-  C
3 0 1 2 wredund
 |-  A Redund <. B , C >.
4 0 1 wss
 |-  A C_ B
5 0 2 cin
 |-  ( A i^i C )
6 1 2 cin
 |-  ( B i^i C )
7 5 6 wceq
 |-  ( A i^i C ) = ( B i^i C )
8 4 7 wa
 |-  ( A C_ B /\ ( A i^i C ) = ( B i^i C ) )
9 3 8 wb
 |-  ( A Redund <. B , C >. <-> ( A C_ B /\ ( A i^i C ) = ( B i^i C ) ) )