Metamath Proof Explorer


Theorem brredundsredund

Description: For sets, binary relation on the class of all redundant sets ( brredunds ) is equivalent to satisfying the redundancy predicate ( df-redund ). (Contributed by Peter Mazsa, 25-Oct-2022)

Ref Expression
Assertion brredundsredund A V B W C X A Redunds B C A Redund B C

Proof

Step Hyp Ref Expression
1 brredunds A V B W C X A Redunds B C A B A C = B C
2 df-redund A Redund B C A B A C = B C
3 1 2 bitr4di A V B W C X A Redunds B C A Redund B C