Description: Binary relation on the class of all redundant sets. (Contributed by Peter Mazsa, 25-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | brredunds | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq12 | |
|
2 | 1 | 3adant3 | |
3 | ineq12 | |
|
4 | 3 | 3adant2 | |
5 | ineq12 | |
|
6 | 5 | 3adant1 | |
7 | 4 6 | eqeq12d | |
8 | 2 7 | anbi12d | |
9 | df-redunds | |
|
10 | 8 9 | brcnvrabga | |