Metamath Proof Explorer


Theorem brredunds

Description: Binary relation on the class of all redundant sets. (Contributed by Peter Mazsa, 25-Oct-2022)

Ref Expression
Assertion brredunds AVBWCXARedundsBCABAC=BC

Proof

Step Hyp Ref Expression
1 sseq12 x=Ay=BxyAB
2 1 3adant3 x=Ay=Bz=CxyAB
3 ineq12 x=Az=Cxz=AC
4 3 3adant2 x=Ay=Bz=Cxz=AC
5 ineq12 y=Bz=Cyz=BC
6 5 3adant1 x=Ay=Bz=Cyz=BC
7 4 6 eqeq12d x=Ay=Bz=Cxz=yzAC=BC
8 2 7 anbi12d x=Ay=Bz=Cxyxz=yzABAC=BC
9 df-redunds Redunds=yzx|xyxz=yz-1
10 8 9 brcnvrabga AVBWCXARedundsBCABAC=BC