Metamath Proof Explorer


Theorem brredunds

Description: Binary relation on the class of all redundant sets. (Contributed by Peter Mazsa, 25-Oct-2022)

Ref Expression
Assertion brredunds A V B W C X A Redunds B C A B A C = B C

Proof

Step Hyp Ref Expression
1 sseq12 x = A y = B x y A B
2 1 3adant3 x = A y = B z = C x y A B
3 ineq12 x = A z = C x z = A C
4 3 3adant2 x = A y = B z = C x z = A C
5 ineq12 y = B z = C y z = B C
6 5 3adant1 x = A y = B z = C y z = B C
7 4 6 eqeq12d x = A y = B z = C x z = y z A C = B C
8 2 7 anbi12d x = A y = B z = C x y x z = y z A B A C = B C
9 df-redunds Redunds = y z x | x y x z = y z -1
10 8 9 brcnvrabga A V B W C X A Redunds B C A B A C = B C