Description: Define the class of all redundant sets x with respect to y in z . For sets, binary relation on the class of all redundant sets ( brredunds ) is equivalent to satisfying the redundancy predicate ( df-redund ). (Contributed by Peter Mazsa, 23-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | df-redunds | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | credunds | |
|
1 | vy | |
|
2 | vz | |
|
3 | vx | |
|
4 | 3 | cv | |
5 | 1 | cv | |
6 | 4 5 | wss | |
7 | 2 | cv | |
8 | 4 7 | cin | |
9 | 5 7 | cin | |
10 | 8 9 | wceq | |
11 | 6 10 | wa | |
12 | 11 1 2 3 | coprab | |
13 | 12 | ccnv | |
14 | 0 13 | wceq | |