Metamath Proof Explorer


Definition df-redunds

Description: Define the class of all redundant sets x with respect to y in z . For sets, binary relation on the class of all redundant sets ( brredunds ) is equivalent to satisfying the redundancy predicate ( df-redund ). (Contributed by Peter Mazsa, 23-Oct-2022)

Ref Expression
Assertion df-redunds
|- Redunds = `' { <. <. y , z >. , x >. | ( x C_ y /\ ( x i^i z ) = ( y i^i z ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 credunds
 |-  Redunds
1 vy
 |-  y
2 vz
 |-  z
3 vx
 |-  x
4 3 cv
 |-  x
5 1 cv
 |-  y
6 4 5 wss
 |-  x C_ y
7 2 cv
 |-  z
8 4 7 cin
 |-  ( x i^i z )
9 5 7 cin
 |-  ( y i^i z )
10 8 9 wceq
 |-  ( x i^i z ) = ( y i^i z )
11 6 10 wa
 |-  ( x C_ y /\ ( x i^i z ) = ( y i^i z ) )
12 11 1 2 3 coprab
 |-  { <. <. y , z >. , x >. | ( x C_ y /\ ( x i^i z ) = ( y i^i z ) ) }
13 12 ccnv
 |-  `' { <. <. y , z >. , x >. | ( x C_ y /\ ( x i^i z ) = ( y i^i z ) ) }
14 0 13 wceq
 |-  Redunds = `' { <. <. y , z >. , x >. | ( x C_ y /\ ( x i^i z ) = ( y i^i z ) ) }