Description: Define the class of all redundant sets x with respect to y in z . For sets, binary relation on the class of all redundant sets ( brredunds ) is equivalent to satisfying the redundancy predicate ( df-redund ). (Contributed by Peter Mazsa, 23-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | df-redunds | |- Redunds = `' { <. <. y , z >. , x >. | ( x C_ y /\ ( x i^i z ) = ( y i^i z ) ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | credunds | |- Redunds |
|
1 | vy | |- y |
|
2 | vz | |- z |
|
3 | vx | |- x |
|
4 | 3 | cv | |- x |
5 | 1 | cv | |- y |
6 | 4 5 | wss | |- x C_ y |
7 | 2 | cv | |- z |
8 | 4 7 | cin | |- ( x i^i z ) |
9 | 5 7 | cin | |- ( y i^i z ) |
10 | 8 9 | wceq | |- ( x i^i z ) = ( y i^i z ) |
11 | 6 10 | wa | |- ( x C_ y /\ ( x i^i z ) = ( y i^i z ) ) |
12 | 11 1 2 3 | coprab | |- { <. <. y , z >. , x >. | ( x C_ y /\ ( x i^i z ) = ( y i^i z ) ) } |
13 | 12 | ccnv | |- `' { <. <. y , z >. , x >. | ( x C_ y /\ ( x i^i z ) = ( y i^i z ) ) } |
14 | 0 13 | wceq | |- Redunds = `' { <. <. y , z >. , x >. | ( x C_ y /\ ( x i^i z ) = ( y i^i z ) ) } |