| Step | Hyp | Ref | Expression | 
						
							| 0 |  | credunds |  |-  Redunds | 
						
							| 1 |  | vy |  |-  y | 
						
							| 2 |  | vz |  |-  z | 
						
							| 3 |  | vx |  |-  x | 
						
							| 4 | 3 | cv |  |-  x | 
						
							| 5 | 1 | cv |  |-  y | 
						
							| 6 | 4 5 | wss |  |-  x C_ y | 
						
							| 7 | 2 | cv |  |-  z | 
						
							| 8 | 4 7 | cin |  |-  ( x i^i z ) | 
						
							| 9 | 5 7 | cin |  |-  ( y i^i z ) | 
						
							| 10 | 8 9 | wceq |  |-  ( x i^i z ) = ( y i^i z ) | 
						
							| 11 | 6 10 | wa |  |-  ( x C_ y /\ ( x i^i z ) = ( y i^i z ) ) | 
						
							| 12 | 11 1 2 3 | coprab |  |-  { <. <. y , z >. , x >. | ( x C_ y /\ ( x i^i z ) = ( y i^i z ) ) } | 
						
							| 13 | 12 | ccnv |  |-  `' { <. <. y , z >. , x >. | ( x C_ y /\ ( x i^i z ) = ( y i^i z ) ) } | 
						
							| 14 | 0 13 | wceq |  |-  Redunds = `' { <. <. y , z >. , x >. | ( x C_ y /\ ( x i^i z ) = ( y i^i z ) ) } |