| Step |
Hyp |
Ref |
Expression |
| 0 |
|
credunds |
|- Redunds |
| 1 |
|
vy |
|- y |
| 2 |
|
vz |
|- z |
| 3 |
|
vx |
|- x |
| 4 |
3
|
cv |
|- x |
| 5 |
1
|
cv |
|- y |
| 6 |
4 5
|
wss |
|- x C_ y |
| 7 |
2
|
cv |
|- z |
| 8 |
4 7
|
cin |
|- ( x i^i z ) |
| 9 |
5 7
|
cin |
|- ( y i^i z ) |
| 10 |
8 9
|
wceq |
|- ( x i^i z ) = ( y i^i z ) |
| 11 |
6 10
|
wa |
|- ( x C_ y /\ ( x i^i z ) = ( y i^i z ) ) |
| 12 |
11 1 2 3
|
coprab |
|- { <. <. y , z >. , x >. | ( x C_ y /\ ( x i^i z ) = ( y i^i z ) ) } |
| 13 |
12
|
ccnv |
|- `' { <. <. y , z >. , x >. | ( x C_ y /\ ( x i^i z ) = ( y i^i z ) ) } |
| 14 |
0 13
|
wceq |
|- Redunds = `' { <. <. y , z >. , x >. | ( x C_ y /\ ( x i^i z ) = ( y i^i z ) ) } |