Metamath Proof Explorer


Theorem brredundsredund

Description: For sets, binary relation on the class of all redundant sets ( brredunds ) is equivalent to satisfying the redundancy predicate ( df-redund ). (Contributed by Peter Mazsa, 25-Oct-2022)

Ref Expression
Assertion brredundsredund
|- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A Redunds <. B , C >. <-> A Redund <. B , C >. ) )

Proof

Step Hyp Ref Expression
1 brredunds
 |-  ( ( A e. V /\ B e. W /\ C e. X ) -> ( A Redunds <. B , C >. <-> ( A C_ B /\ ( A i^i C ) = ( B i^i C ) ) ) )
2 df-redund
 |-  ( A Redund <. B , C >. <-> ( A C_ B /\ ( A i^i C ) = ( B i^i C ) ) )
3 1 2 bitr4di
 |-  ( ( A e. V /\ B e. W /\ C e. X ) -> ( A Redunds <. B , C >. <-> A Redund <. B , C >. ) )