Description: For sets, binary relation on the class of all redundant sets ( brredunds ) is equivalent to satisfying the redundancy predicate ( df-redund ). (Contributed by Peter Mazsa, 25-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brredundsredund | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A Redunds <. B , C >. <-> A Redund <. B , C >. ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | brredunds | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A Redunds <. B , C >. <-> ( A C_ B /\ ( A i^i C ) = ( B i^i C ) ) ) ) | |
| 2 | df-redund | |- ( A Redund <. B , C >. <-> ( A C_ B /\ ( A i^i C ) = ( B i^i C ) ) ) | |
| 3 | 1 2 | bitr4di | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A Redunds <. B , C >. <-> A Redund <. B , C >. ) ) |