Metamath Proof Explorer


Theorem redundpbi1

Description: Equivalence of redundancy of propositions. (Contributed by Peter Mazsa, 25-Oct-2022)

Ref Expression
Hypothesis redundpbi1.1 φ θ
Assertion redundpbi1 redund φ ψ χ redund θ ψ χ

Proof

Step Hyp Ref Expression
1 redundpbi1.1 φ θ
2 1 imbi1i φ ψ θ ψ
3 1 anbi1i φ χ θ χ
4 3 bibi1i φ χ ψ χ θ χ ψ χ
5 2 4 anbi12i φ ψ φ χ ψ χ θ ψ θ χ ψ χ
6 df-redundp redund φ ψ χ φ ψ φ χ ψ χ
7 df-redundp redund θ ψ χ θ ψ θ χ ψ χ
8 5 6 7 3bitr4i redund φ ψ χ redund θ ψ χ