| Step | Hyp | Ref | Expression | 
						
							| 1 |  | redundpbi1.1 | ⊢ ( 𝜑  ↔  𝜃 ) | 
						
							| 2 | 1 | imbi1i | ⊢ ( ( 𝜑  →  𝜓 )  ↔  ( 𝜃  →  𝜓 ) ) | 
						
							| 3 | 1 | anbi1i | ⊢ ( ( 𝜑  ∧  𝜒 )  ↔  ( 𝜃  ∧  𝜒 ) ) | 
						
							| 4 | 3 | bibi1i | ⊢ ( ( ( 𝜑  ∧  𝜒 )  ↔  ( 𝜓  ∧  𝜒 ) )  ↔  ( ( 𝜃  ∧  𝜒 )  ↔  ( 𝜓  ∧  𝜒 ) ) ) | 
						
							| 5 | 2 4 | anbi12i | ⊢ ( ( ( 𝜑  →  𝜓 )  ∧  ( ( 𝜑  ∧  𝜒 )  ↔  ( 𝜓  ∧  𝜒 ) ) )  ↔  ( ( 𝜃  →  𝜓 )  ∧  ( ( 𝜃  ∧  𝜒 )  ↔  ( 𝜓  ∧  𝜒 ) ) ) ) | 
						
							| 6 |  | df-redundp | ⊢ (  redund  ( 𝜑 ,  𝜓 ,  𝜒 )  ↔  ( ( 𝜑  →  𝜓 )  ∧  ( ( 𝜑  ∧  𝜒 )  ↔  ( 𝜓  ∧  𝜒 ) ) ) ) | 
						
							| 7 |  | df-redundp | ⊢ (  redund  ( 𝜃 ,  𝜓 ,  𝜒 )  ↔  ( ( 𝜃  →  𝜓 )  ∧  ( ( 𝜃  ∧  𝜒 )  ↔  ( 𝜓  ∧  𝜒 ) ) ) ) | 
						
							| 8 | 5 6 7 | 3bitr4i | ⊢ (  redund  ( 𝜑 ,  𝜓 ,  𝜒 )  ↔   redund  ( 𝜃 ,  𝜓 ,  𝜒 ) ) |