| Step | Hyp | Ref | Expression | 
						
							| 1 |  | inxpssres | ⊢ (  I   ∩  ( dom  𝑟  ×  ran  𝑟 ) )  ⊆  (  I   ↾  dom  𝑟 ) | 
						
							| 2 |  | sstr2 | ⊢ ( (  I   ∩  ( dom  𝑟  ×  ran  𝑟 ) )  ⊆  (  I   ↾  dom  𝑟 )  →  ( (  I   ↾  dom  𝑟 )  ⊆  𝑟  →  (  I   ∩  ( dom  𝑟  ×  ran  𝑟 ) )  ⊆  𝑟 ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( (  I   ↾  dom  𝑟 )  ⊆  𝑟  →  (  I   ∩  ( dom  𝑟  ×  ran  𝑟 ) )  ⊆  𝑟 ) | 
						
							| 4 | 3 | ssrabi | ⊢ { 𝑟  ∈   Rels   ∣  (  I   ↾  dom  𝑟 )  ⊆  𝑟 }  ⊆  { 𝑟  ∈   Rels   ∣  (  I   ∩  ( dom  𝑟  ×  ran  𝑟 ) )  ⊆  𝑟 } | 
						
							| 5 |  | dfrefrels2 | ⊢  RefRels   =  { 𝑟  ∈   Rels   ∣  (  I   ∩  ( dom  𝑟  ×  ran  𝑟 ) )  ⊆  𝑟 } | 
						
							| 6 | 4 5 | sseqtrri | ⊢ { 𝑟  ∈   Rels   ∣  (  I   ↾  dom  𝑟 )  ⊆  𝑟 }  ⊆   RefRels | 
						
							| 7 |  | in32 | ⊢ ( ( { 𝑟  ∈   Rels   ∣  (  I   ↾  dom  𝑟 )  ⊆  𝑟 }  ∩   SymRels  )  ∩   RefRels  )  =  ( ( { 𝑟  ∈   Rels   ∣  (  I   ↾  dom  𝑟 )  ⊆  𝑟 }  ∩   RefRels  )  ∩   SymRels  ) | 
						
							| 8 |  | inrab | ⊢ ( { 𝑟  ∈   Rels   ∣  (  I   ↾  dom  𝑟 )  ⊆  𝑟 }  ∩  { 𝑟  ∈   Rels   ∣  ◡ 𝑟  ⊆  𝑟 } )  =  { 𝑟  ∈   Rels   ∣  ( (  I   ↾  dom  𝑟 )  ⊆  𝑟  ∧  ◡ 𝑟  ⊆  𝑟 ) } | 
						
							| 9 |  | dfsymrels2 | ⊢  SymRels   =  { 𝑟  ∈   Rels   ∣  ◡ 𝑟  ⊆  𝑟 } | 
						
							| 10 | 9 | ineq2i | ⊢ ( { 𝑟  ∈   Rels   ∣  (  I   ↾  dom  𝑟 )  ⊆  𝑟 }  ∩   SymRels  )  =  ( { 𝑟  ∈   Rels   ∣  (  I   ↾  dom  𝑟 )  ⊆  𝑟 }  ∩  { 𝑟  ∈   Rels   ∣  ◡ 𝑟  ⊆  𝑟 } ) | 
						
							| 11 |  | refsymrels2 | ⊢ (  RefRels   ∩   SymRels  )  =  { 𝑟  ∈   Rels   ∣  ( (  I   ↾  dom  𝑟 )  ⊆  𝑟  ∧  ◡ 𝑟  ⊆  𝑟 ) } | 
						
							| 12 | 8 10 11 | 3eqtr4i | ⊢ ( { 𝑟  ∈   Rels   ∣  (  I   ↾  dom  𝑟 )  ⊆  𝑟 }  ∩   SymRels  )  =  (  RefRels   ∩   SymRels  ) | 
						
							| 13 | 12 | ineq1i | ⊢ ( ( { 𝑟  ∈   Rels   ∣  (  I   ↾  dom  𝑟 )  ⊆  𝑟 }  ∩   SymRels  )  ∩   RefRels  )  =  ( (  RefRels   ∩   SymRels  )  ∩   RefRels  ) | 
						
							| 14 |  | inass | ⊢ ( ( { 𝑟  ∈   Rels   ∣  (  I   ↾  dom  𝑟 )  ⊆  𝑟 }  ∩   RefRels  )  ∩   SymRels  )  =  ( { 𝑟  ∈   Rels   ∣  (  I   ↾  dom  𝑟 )  ⊆  𝑟 }  ∩  (  RefRels   ∩   SymRels  ) ) | 
						
							| 15 | 7 13 14 | 3eqtr3ri | ⊢ ( { 𝑟  ∈   Rels   ∣  (  I   ↾  dom  𝑟 )  ⊆  𝑟 }  ∩  (  RefRels   ∩   SymRels  ) )  =  ( (  RefRels   ∩   SymRels  )  ∩   RefRels  ) | 
						
							| 16 |  | in32 | ⊢ ( (  RefRels   ∩   SymRels  )  ∩   RefRels  )  =  ( (  RefRels   ∩   RefRels  )  ∩   SymRels  ) | 
						
							| 17 |  | inass | ⊢ ( (  RefRels   ∩   RefRels  )  ∩   SymRels  )  =  (  RefRels   ∩  (  RefRels   ∩   SymRels  ) ) | 
						
							| 18 | 15 16 17 | 3eqtri | ⊢ ( { 𝑟  ∈   Rels   ∣  (  I   ↾  dom  𝑟 )  ⊆  𝑟 }  ∩  (  RefRels   ∩   SymRels  ) )  =  (  RefRels   ∩  (  RefRels   ∩   SymRels  ) ) | 
						
							| 19 |  | df-redund | ⊢ ( { 𝑟  ∈   Rels   ∣  (  I   ↾  dom  𝑟 )  ⊆  𝑟 }  Redund  〈  RefRels  ,  (  RefRels   ∩   SymRels  ) 〉  ↔  ( { 𝑟  ∈   Rels   ∣  (  I   ↾  dom  𝑟 )  ⊆  𝑟 }  ⊆   RefRels   ∧  ( { 𝑟  ∈   Rels   ∣  (  I   ↾  dom  𝑟 )  ⊆  𝑟 }  ∩  (  RefRels   ∩   SymRels  ) )  =  (  RefRels   ∩  (  RefRels   ∩   SymRels  ) ) ) ) | 
						
							| 20 | 6 18 19 | mpbir2an | ⊢ { 𝑟  ∈   Rels   ∣  (  I   ↾  dom  𝑟 )  ⊆  𝑟 }  Redund  〈  RefRels  ,  (  RefRels   ∩   SymRels  ) 〉 |