Step |
Hyp |
Ref |
Expression |
1 |
|
inxpssres |
⊢ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ ( I ↾ dom 𝑟 ) |
2 |
|
sstr2 |
⊢ ( ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ ( I ↾ dom 𝑟 ) → ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 → ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ 𝑟 ) ) |
3 |
1 2
|
ax-mp |
⊢ ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 → ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ 𝑟 ) |
4 |
3
|
ssrabi |
⊢ { 𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟 ) ⊆ 𝑟 } ⊆ { 𝑟 ∈ Rels ∣ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ 𝑟 } |
5 |
|
dfrefrels2 |
⊢ RefRels = { 𝑟 ∈ Rels ∣ ( I ∩ ( dom 𝑟 × ran 𝑟 ) ) ⊆ 𝑟 } |
6 |
4 5
|
sseqtrri |
⊢ { 𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟 ) ⊆ 𝑟 } ⊆ RefRels |
7 |
|
in32 |
⊢ ( ( { 𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟 ) ⊆ 𝑟 } ∩ SymRels ) ∩ RefRels ) = ( ( { 𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟 ) ⊆ 𝑟 } ∩ RefRels ) ∩ SymRels ) |
8 |
|
inrab |
⊢ ( { 𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟 ) ⊆ 𝑟 } ∩ { 𝑟 ∈ Rels ∣ ◡ 𝑟 ⊆ 𝑟 } ) = { 𝑟 ∈ Rels ∣ ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ) } |
9 |
|
dfsymrels2 |
⊢ SymRels = { 𝑟 ∈ Rels ∣ ◡ 𝑟 ⊆ 𝑟 } |
10 |
9
|
ineq2i |
⊢ ( { 𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟 ) ⊆ 𝑟 } ∩ SymRels ) = ( { 𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟 ) ⊆ 𝑟 } ∩ { 𝑟 ∈ Rels ∣ ◡ 𝑟 ⊆ 𝑟 } ) |
11 |
|
refsymrels2 |
⊢ ( RefRels ∩ SymRels ) = { 𝑟 ∈ Rels ∣ ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ) } |
12 |
8 10 11
|
3eqtr4i |
⊢ ( { 𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟 ) ⊆ 𝑟 } ∩ SymRels ) = ( RefRels ∩ SymRels ) |
13 |
12
|
ineq1i |
⊢ ( ( { 𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟 ) ⊆ 𝑟 } ∩ SymRels ) ∩ RefRels ) = ( ( RefRels ∩ SymRels ) ∩ RefRels ) |
14 |
|
inass |
⊢ ( ( { 𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟 ) ⊆ 𝑟 } ∩ RefRels ) ∩ SymRels ) = ( { 𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟 ) ⊆ 𝑟 } ∩ ( RefRels ∩ SymRels ) ) |
15 |
7 13 14
|
3eqtr3ri |
⊢ ( { 𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟 ) ⊆ 𝑟 } ∩ ( RefRels ∩ SymRels ) ) = ( ( RefRels ∩ SymRels ) ∩ RefRels ) |
16 |
|
in32 |
⊢ ( ( RefRels ∩ SymRels ) ∩ RefRels ) = ( ( RefRels ∩ RefRels ) ∩ SymRels ) |
17 |
|
inass |
⊢ ( ( RefRels ∩ RefRels ) ∩ SymRels ) = ( RefRels ∩ ( RefRels ∩ SymRels ) ) |
18 |
15 16 17
|
3eqtri |
⊢ ( { 𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟 ) ⊆ 𝑟 } ∩ ( RefRels ∩ SymRels ) ) = ( RefRels ∩ ( RefRels ∩ SymRels ) ) |
19 |
|
df-redund |
⊢ ( { 𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟 ) ⊆ 𝑟 } Redund 〈 RefRels , ( RefRels ∩ SymRels ) 〉 ↔ ( { 𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟 ) ⊆ 𝑟 } ⊆ RefRels ∧ ( { 𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟 ) ⊆ 𝑟 } ∩ ( RefRels ∩ SymRels ) ) = ( RefRels ∩ ( RefRels ∩ SymRels ) ) ) ) |
20 |
6 18 19
|
mpbir2an |
⊢ { 𝑟 ∈ Rels ∣ ( I ↾ dom 𝑟 ) ⊆ 𝑟 } Redund 〈 RefRels , ( RefRels ∩ SymRels ) 〉 |