| Step | Hyp | Ref | Expression | 
						
							| 1 |  | inxpssres |  |-  ( _I i^i ( dom r X. ran r ) ) C_ ( _I |` dom r ) | 
						
							| 2 |  | sstr2 |  |-  ( ( _I i^i ( dom r X. ran r ) ) C_ ( _I |` dom r ) -> ( ( _I |` dom r ) C_ r -> ( _I i^i ( dom r X. ran r ) ) C_ r ) ) | 
						
							| 3 | 1 2 | ax-mp |  |-  ( ( _I |` dom r ) C_ r -> ( _I i^i ( dom r X. ran r ) ) C_ r ) | 
						
							| 4 | 3 | ssrabi |  |-  { r e. Rels | ( _I |` dom r ) C_ r } C_ { r e. Rels | ( _I i^i ( dom r X. ran r ) ) C_ r } | 
						
							| 5 |  | dfrefrels2 |  |-  RefRels = { r e. Rels | ( _I i^i ( dom r X. ran r ) ) C_ r } | 
						
							| 6 | 4 5 | sseqtrri |  |-  { r e. Rels | ( _I |` dom r ) C_ r } C_ RefRels | 
						
							| 7 |  | in32 |  |-  ( ( { r e. Rels | ( _I |` dom r ) C_ r } i^i SymRels ) i^i RefRels ) = ( ( { r e. Rels | ( _I |` dom r ) C_ r } i^i RefRels ) i^i SymRels ) | 
						
							| 8 |  | inrab |  |-  ( { r e. Rels | ( _I |` dom r ) C_ r } i^i { r e. Rels | `' r C_ r } ) = { r e. Rels | ( ( _I |` dom r ) C_ r /\ `' r C_ r ) } | 
						
							| 9 |  | dfsymrels2 |  |-  SymRels = { r e. Rels | `' r C_ r } | 
						
							| 10 | 9 | ineq2i |  |-  ( { r e. Rels | ( _I |` dom r ) C_ r } i^i SymRels ) = ( { r e. Rels | ( _I |` dom r ) C_ r } i^i { r e. Rels | `' r C_ r } ) | 
						
							| 11 |  | refsymrels2 |  |-  ( RefRels i^i SymRels ) = { r e. Rels | ( ( _I |` dom r ) C_ r /\ `' r C_ r ) } | 
						
							| 12 | 8 10 11 | 3eqtr4i |  |-  ( { r e. Rels | ( _I |` dom r ) C_ r } i^i SymRels ) = ( RefRels i^i SymRels ) | 
						
							| 13 | 12 | ineq1i |  |-  ( ( { r e. Rels | ( _I |` dom r ) C_ r } i^i SymRels ) i^i RefRels ) = ( ( RefRels i^i SymRels ) i^i RefRels ) | 
						
							| 14 |  | inass |  |-  ( ( { r e. Rels | ( _I |` dom r ) C_ r } i^i RefRels ) i^i SymRels ) = ( { r e. Rels | ( _I |` dom r ) C_ r } i^i ( RefRels i^i SymRels ) ) | 
						
							| 15 | 7 13 14 | 3eqtr3ri |  |-  ( { r e. Rels | ( _I |` dom r ) C_ r } i^i ( RefRels i^i SymRels ) ) = ( ( RefRels i^i SymRels ) i^i RefRels ) | 
						
							| 16 |  | in32 |  |-  ( ( RefRels i^i SymRels ) i^i RefRels ) = ( ( RefRels i^i RefRels ) i^i SymRels ) | 
						
							| 17 |  | inass |  |-  ( ( RefRels i^i RefRels ) i^i SymRels ) = ( RefRels i^i ( RefRels i^i SymRels ) ) | 
						
							| 18 | 15 16 17 | 3eqtri |  |-  ( { r e. Rels | ( _I |` dom r ) C_ r } i^i ( RefRels i^i SymRels ) ) = ( RefRels i^i ( RefRels i^i SymRels ) ) | 
						
							| 19 |  | df-redund |  |-  ( { r e. Rels | ( _I |` dom r ) C_ r } Redund <. RefRels , ( RefRels i^i SymRels ) >. <-> ( { r e. Rels | ( _I |` dom r ) C_ r } C_ RefRels /\ ( { r e. Rels | ( _I |` dom r ) C_ r } i^i ( RefRels i^i SymRels ) ) = ( RefRels i^i ( RefRels i^i SymRels ) ) ) ) | 
						
							| 20 | 6 18 19 | mpbir2an |  |-  { r e. Rels | ( _I |` dom r ) C_ r } Redund <. RefRels , ( RefRels i^i SymRels ) >. |