Step |
Hyp |
Ref |
Expression |
1 |
|
inxpssres |
|- ( _I i^i ( dom r X. ran r ) ) C_ ( _I |` dom r ) |
2 |
|
sstr2 |
|- ( ( _I i^i ( dom r X. ran r ) ) C_ ( _I |` dom r ) -> ( ( _I |` dom r ) C_ r -> ( _I i^i ( dom r X. ran r ) ) C_ r ) ) |
3 |
1 2
|
ax-mp |
|- ( ( _I |` dom r ) C_ r -> ( _I i^i ( dom r X. ran r ) ) C_ r ) |
4 |
3
|
ssrabi |
|- { r e. Rels | ( _I |` dom r ) C_ r } C_ { r e. Rels | ( _I i^i ( dom r X. ran r ) ) C_ r } |
5 |
|
dfrefrels2 |
|- RefRels = { r e. Rels | ( _I i^i ( dom r X. ran r ) ) C_ r } |
6 |
4 5
|
sseqtrri |
|- { r e. Rels | ( _I |` dom r ) C_ r } C_ RefRels |
7 |
|
in32 |
|- ( ( { r e. Rels | ( _I |` dom r ) C_ r } i^i SymRels ) i^i RefRels ) = ( ( { r e. Rels | ( _I |` dom r ) C_ r } i^i RefRels ) i^i SymRels ) |
8 |
|
inrab |
|- ( { r e. Rels | ( _I |` dom r ) C_ r } i^i { r e. Rels | `' r C_ r } ) = { r e. Rels | ( ( _I |` dom r ) C_ r /\ `' r C_ r ) } |
9 |
|
dfsymrels2 |
|- SymRels = { r e. Rels | `' r C_ r } |
10 |
9
|
ineq2i |
|- ( { r e. Rels | ( _I |` dom r ) C_ r } i^i SymRels ) = ( { r e. Rels | ( _I |` dom r ) C_ r } i^i { r e. Rels | `' r C_ r } ) |
11 |
|
refsymrels2 |
|- ( RefRels i^i SymRels ) = { r e. Rels | ( ( _I |` dom r ) C_ r /\ `' r C_ r ) } |
12 |
8 10 11
|
3eqtr4i |
|- ( { r e. Rels | ( _I |` dom r ) C_ r } i^i SymRels ) = ( RefRels i^i SymRels ) |
13 |
12
|
ineq1i |
|- ( ( { r e. Rels | ( _I |` dom r ) C_ r } i^i SymRels ) i^i RefRels ) = ( ( RefRels i^i SymRels ) i^i RefRels ) |
14 |
|
inass |
|- ( ( { r e. Rels | ( _I |` dom r ) C_ r } i^i RefRels ) i^i SymRels ) = ( { r e. Rels | ( _I |` dom r ) C_ r } i^i ( RefRels i^i SymRels ) ) |
15 |
7 13 14
|
3eqtr3ri |
|- ( { r e. Rels | ( _I |` dom r ) C_ r } i^i ( RefRels i^i SymRels ) ) = ( ( RefRels i^i SymRels ) i^i RefRels ) |
16 |
|
in32 |
|- ( ( RefRels i^i SymRels ) i^i RefRels ) = ( ( RefRels i^i RefRels ) i^i SymRels ) |
17 |
|
inass |
|- ( ( RefRels i^i RefRels ) i^i SymRels ) = ( RefRels i^i ( RefRels i^i SymRels ) ) |
18 |
15 16 17
|
3eqtri |
|- ( { r e. Rels | ( _I |` dom r ) C_ r } i^i ( RefRels i^i SymRels ) ) = ( RefRels i^i ( RefRels i^i SymRels ) ) |
19 |
|
df-redund |
|- ( { r e. Rels | ( _I |` dom r ) C_ r } Redund <. RefRels , ( RefRels i^i SymRels ) >. <-> ( { r e. Rels | ( _I |` dom r ) C_ r } C_ RefRels /\ ( { r e. Rels | ( _I |` dom r ) C_ r } i^i ( RefRels i^i SymRels ) ) = ( RefRels i^i ( RefRels i^i SymRels ) ) ) ) |
20 |
6 18 19
|
mpbir2an |
|- { r e. Rels | ( _I |` dom r ) C_ r } Redund <. RefRels , ( RefRels i^i SymRels ) >. |