| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfrefrels2 |
|- RefRels = { r e. Rels | ( _I i^i ( dom r X. ran r ) ) C_ r } |
| 2 |
|
dfsymrels2 |
|- SymRels = { r e. Rels | `' r C_ r } |
| 3 |
1 2
|
ineq12i |
|- ( RefRels i^i SymRels ) = ( { r e. Rels | ( _I i^i ( dom r X. ran r ) ) C_ r } i^i { r e. Rels | `' r C_ r } ) |
| 4 |
|
inrab |
|- ( { r e. Rels | ( _I i^i ( dom r X. ran r ) ) C_ r } i^i { r e. Rels | `' r C_ r } ) = { r e. Rels | ( ( _I i^i ( dom r X. ran r ) ) C_ r /\ `' r C_ r ) } |
| 5 |
|
symrefref2 |
|- ( `' r C_ r -> ( ( _I i^i ( dom r X. ran r ) ) C_ r <-> ( _I |` dom r ) C_ r ) ) |
| 6 |
5
|
pm5.32ri |
|- ( ( ( _I i^i ( dom r X. ran r ) ) C_ r /\ `' r C_ r ) <-> ( ( _I |` dom r ) C_ r /\ `' r C_ r ) ) |
| 7 |
6
|
rabbii |
|- { r e. Rels | ( ( _I i^i ( dom r X. ran r ) ) C_ r /\ `' r C_ r ) } = { r e. Rels | ( ( _I |` dom r ) C_ r /\ `' r C_ r ) } |
| 8 |
3 4 7
|
3eqtri |
|- ( RefRels i^i SymRels ) = { r e. Rels | ( ( _I |` dom r ) C_ r /\ `' r C_ r ) } |