Step |
Hyp |
Ref |
Expression |
1 |
|
df-eqvrels |
|- EqvRels = ( ( RefRels i^i SymRels ) i^i TrRels ) |
2 |
|
refsymrels2 |
|- ( RefRels i^i SymRels ) = { r e. Rels | ( ( _I |` dom r ) C_ r /\ `' r C_ r ) } |
3 |
|
dftrrels2 |
|- TrRels = { r e. Rels | ( r o. r ) C_ r } |
4 |
2 3
|
ineq12i |
|- ( ( RefRels i^i SymRels ) i^i TrRels ) = ( { r e. Rels | ( ( _I |` dom r ) C_ r /\ `' r C_ r ) } i^i { r e. Rels | ( r o. r ) C_ r } ) |
5 |
|
inrab |
|- ( { r e. Rels | ( ( _I |` dom r ) C_ r /\ `' r C_ r ) } i^i { r e. Rels | ( r o. r ) C_ r } ) = { r e. Rels | ( ( ( _I |` dom r ) C_ r /\ `' r C_ r ) /\ ( r o. r ) C_ r ) } |
6 |
1 4 5
|
3eqtri |
|- EqvRels = { r e. Rels | ( ( ( _I |` dom r ) C_ r /\ `' r C_ r ) /\ ( r o. r ) C_ r ) } |
7 |
|
df-3an |
|- ( ( ( _I |` dom r ) C_ r /\ `' r C_ r /\ ( r o. r ) C_ r ) <-> ( ( ( _I |` dom r ) C_ r /\ `' r C_ r ) /\ ( r o. r ) C_ r ) ) |
8 |
7
|
rabbii |
|- { r e. Rels | ( ( _I |` dom r ) C_ r /\ `' r C_ r /\ ( r o. r ) C_ r ) } = { r e. Rels | ( ( ( _I |` dom r ) C_ r /\ `' r C_ r ) /\ ( r o. r ) C_ r ) } |
9 |
6 8
|
eqtr4i |
|- EqvRels = { r e. Rels | ( ( _I |` dom r ) C_ r /\ `' r C_ r /\ ( r o. r ) C_ r ) } |