Step |
Hyp |
Ref |
Expression |
1 |
|
df-eqvrels |
⊢ EqvRels = ( ( RefRels ∩ SymRels ) ∩ TrRels ) |
2 |
|
refsymrels2 |
⊢ ( RefRels ∩ SymRels ) = { 𝑟 ∈ Rels ∣ ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ) } |
3 |
|
dftrrels2 |
⊢ TrRels = { 𝑟 ∈ Rels ∣ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 } |
4 |
2 3
|
ineq12i |
⊢ ( ( RefRels ∩ SymRels ) ∩ TrRels ) = ( { 𝑟 ∈ Rels ∣ ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ) } ∩ { 𝑟 ∈ Rels ∣ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 } ) |
5 |
|
inrab |
⊢ ( { 𝑟 ∈ Rels ∣ ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ) } ∩ { 𝑟 ∈ Rels ∣ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 } ) = { 𝑟 ∈ Rels ∣ ( ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ) ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } |
6 |
1 4 5
|
3eqtri |
⊢ EqvRels = { 𝑟 ∈ Rels ∣ ( ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ) ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } |
7 |
|
df-3an |
⊢ ( ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) ↔ ( ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ) ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) ) |
8 |
7
|
rabbii |
⊢ { 𝑟 ∈ Rels ∣ ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } = { 𝑟 ∈ Rels ∣ ( ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ) ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } |
9 |
6 8
|
eqtr4i |
⊢ EqvRels = { 𝑟 ∈ Rels ∣ ( ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ ◡ 𝑟 ⊆ 𝑟 ∧ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ) } |