Metamath Proof Explorer


Definition df-eqvrels

Description: Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel . Alternate definitions are dfeqvrels2 and dfeqvrels3 . (Contributed by Peter Mazsa, 7-Nov-2018)

Ref Expression
Assertion df-eqvrels EqvRels = ( ( RefRels ∩ SymRels ) ∩ TrRels )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ceqvrels EqvRels
1 crefrels RefRels
2 csymrels SymRels
3 1 2 cin ( RefRels ∩ SymRels )
4 ctrrels TrRels
5 3 4 cin ( ( RefRels ∩ SymRels ) ∩ TrRels )
6 0 5 wceq EqvRels = ( ( RefRels ∩ SymRels ) ∩ TrRels )