Metamath Proof Explorer


Definition df-eqvrels

Description: Define the class of equivalence relations. For sets, being an element of the class of equivalence relations is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel . Alternate definitions are dfeqvrels2 and dfeqvrels3 . (Contributed by Peter Mazsa, 7-Nov-2018)

Ref Expression
Assertion df-eqvrels
|- EqvRels = ( ( RefRels i^i SymRels ) i^i TrRels )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ceqvrels
 |-  EqvRels
1 crefrels
 |-  RefRels
2 csymrels
 |-  SymRels
3 1 2 cin
 |-  ( RefRels i^i SymRels )
4 ctrrels
 |-  TrRels
5 3 4 cin
 |-  ( ( RefRels i^i SymRels ) i^i TrRels )
6 0 5 wceq
 |-  EqvRels = ( ( RefRels i^i SymRels ) i^i TrRels )