Metamath Proof Explorer


Definition df-eqvrel

Description: Define the equivalence relation predicate. (Read: R is an equivalence relation.) For sets, being an element of the class of equivalence relations ( df-eqvrels ) is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel . Alternate definitions are dfeqvrel2 and dfeqvrel3 . (Contributed by Peter Mazsa, 17-Apr-2019)

Ref Expression
Assertion df-eqvrel
|- ( EqvRel R <-> ( RefRel R /\ SymRel R /\ TrRel R ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR
 |-  R
1 0 weqvrel
 |-  EqvRel R
2 0 wrefrel
 |-  RefRel R
3 0 wsymrel
 |-  SymRel R
4 0 wtrrel
 |-  TrRel R
5 2 3 4 w3a
 |-  ( RefRel R /\ SymRel R /\ TrRel R )
6 1 5 wb
 |-  ( EqvRel R <-> ( RefRel R /\ SymRel R /\ TrRel R ) )