Metamath Proof Explorer


Definition df-eqvrel

Description: Define the equivalence relation predicate. (Read: R is an equivalence relation.) For sets, being an element of the class of equivalence relations ( df-eqvrels ) is equivalent to satisfying the equivalence relation predicate, see eleqvrelsrel . Alternate definitions are dfeqvrel2 and dfeqvrel3 . (Contributed by Peter Mazsa, 17-Apr-2019)

Ref Expression
Assertion df-eqvrel ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR 𝑅
1 0 weqvrel EqvRel 𝑅
2 0 wrefrel RefRel 𝑅
3 0 wsymrel SymRel 𝑅
4 0 wtrrel TrRel 𝑅
5 2 3 4 w3a ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅 )
6 1 5 wb ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅 ) )