Step |
Hyp |
Ref |
Expression |
1 |
|
df-eqvrel |
|- ( EqvRel R <-> ( RefRel R /\ SymRel R /\ TrRel R ) ) |
2 |
|
refsymrel2 |
|- ( ( RefRel R /\ SymRel R ) <-> ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ Rel R ) ) |
3 |
|
dftrrel2 |
|- ( TrRel R <-> ( ( R o. R ) C_ R /\ Rel R ) ) |
4 |
2 3
|
anbi12i |
|- ( ( ( RefRel R /\ SymRel R ) /\ TrRel R ) <-> ( ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ Rel R ) /\ ( ( R o. R ) C_ R /\ Rel R ) ) ) |
5 |
|
df-3an |
|- ( ( RefRel R /\ SymRel R /\ TrRel R ) <-> ( ( RefRel R /\ SymRel R ) /\ TrRel R ) ) |
6 |
|
df-3an |
|- ( ( ( _I |` dom R ) C_ R /\ `' R C_ R /\ ( R o. R ) C_ R ) <-> ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ ( R o. R ) C_ R ) ) |
7 |
6
|
anbi1i |
|- ( ( ( ( _I |` dom R ) C_ R /\ `' R C_ R /\ ( R o. R ) C_ R ) /\ Rel R ) <-> ( ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ ( R o. R ) C_ R ) /\ Rel R ) ) |
8 |
|
3anan32 |
|- ( ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ Rel R /\ ( R o. R ) C_ R ) <-> ( ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ ( R o. R ) C_ R ) /\ Rel R ) ) |
9 |
|
anandi3r |
|- ( ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ Rel R /\ ( R o. R ) C_ R ) <-> ( ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ Rel R ) /\ ( ( R o. R ) C_ R /\ Rel R ) ) ) |
10 |
7 8 9
|
3bitr2i |
|- ( ( ( ( _I |` dom R ) C_ R /\ `' R C_ R /\ ( R o. R ) C_ R ) /\ Rel R ) <-> ( ( ( ( _I |` dom R ) C_ R /\ `' R C_ R ) /\ Rel R ) /\ ( ( R o. R ) C_ R /\ Rel R ) ) ) |
11 |
4 5 10
|
3bitr4i |
|- ( ( RefRel R /\ SymRel R /\ TrRel R ) <-> ( ( ( _I |` dom R ) C_ R /\ `' R C_ R /\ ( R o. R ) C_ R ) /\ Rel R ) ) |
12 |
1 11
|
bitri |
|- ( EqvRel R <-> ( ( ( _I |` dom R ) C_ R /\ `' R C_ R /\ ( R o. R ) C_ R ) /\ Rel R ) ) |