Metamath Proof Explorer


Theorem dfeqvrel2

Description: Alternate definition of the equivalence relation predicate. (Contributed by Peter Mazsa, 22-Apr-2019)

Ref Expression
Assertion dfeqvrel2 EqvRel R I dom R R R -1 R R R R Rel R

Proof

Step Hyp Ref Expression
1 df-eqvrel EqvRel R RefRel R SymRel R TrRel R
2 refsymrel2 RefRel R SymRel R I dom R R R -1 R Rel R
3 dftrrel2 TrRel R R R R Rel R
4 2 3 anbi12i RefRel R SymRel R TrRel R I dom R R R -1 R Rel R R R R Rel R
5 df-3an RefRel R SymRel R TrRel R RefRel R SymRel R TrRel R
6 df-3an I dom R R R -1 R R R R I dom R R R -1 R R R R
7 6 anbi1i I dom R R R -1 R R R R Rel R I dom R R R -1 R R R R Rel R
8 3anan32 I dom R R R -1 R Rel R R R R I dom R R R -1 R R R R Rel R
9 anandi3r I dom R R R -1 R Rel R R R R I dom R R R -1 R Rel R R R R Rel R
10 7 8 9 3bitr2i I dom R R R -1 R R R R Rel R I dom R R R -1 R Rel R R R R Rel R
11 4 5 10 3bitr4i RefRel R SymRel R TrRel R I dom R R R -1 R R R R Rel R
12 1 11 bitri EqvRel R I dom R R R -1 R R R R Rel R