Metamath Proof Explorer


Definition df-trrel

Description: Define the transitive relation predicate. (Read: R is a transitive relation.) For sets, being an element of the class of transitive relations ( df-trrels ) is equivalent to satisfying the transitive relation predicate, see eltrrelsrel . Alternate definitions are dftrrel2 and dftrrel3 . (Contributed by Peter Mazsa, 17-Jul-2021)

Ref Expression
Assertion df-trrel TrRelRRdomR×ranRRdomR×ranRRdomR×ranRRelR

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR classR
1 0 wtrrel wffTrRelR
2 0 cdm classdomR
3 0 crn classranR
4 2 3 cxp classdomR×ranR
5 0 4 cin classRdomR×ranR
6 5 5 ccom classRdomR×ranRRdomR×ranR
7 6 5 wss wffRdomR×ranRRdomR×ranRRdomR×ranR
8 0 wrel wffRelR
9 7 8 wa wffRdomR×ranRRdomR×ranRRdomR×ranRRelR
10 1 9 wb wffTrRelRRdomR×ranRRdomR×ranRRdomR×ranRRelR