Metamath Proof Explorer


Theorem eltrrelsrel

Description: For sets, being an element of the class of transitive relations is equivalent to satisfying the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021)

Ref Expression
Assertion eltrrelsrel RVRTrRelsTrRelR

Proof

Step Hyp Ref Expression
1 elrelsrel RVRRelsRelR
2 1 anbi2d RVRRRRRelsRRRRelR
3 eltrrels2 RTrRelsRRRRRels
4 dftrrel2 TrRelRRRRRelR
5 2 3 4 3bitr4g RVRTrRelsTrRelR