Metamath Proof Explorer


Theorem eltrrels2

Description: Element of the class of transitive relations. (Contributed by Peter Mazsa, 22-Aug-2021)

Ref Expression
Assertion eltrrels2 RTrRelsRRRRRels

Proof

Step Hyp Ref Expression
1 dftrrels2 TrRels=rRels|rrr
2 coideq r=Rrr=RR
3 id r=Rr=R
4 2 3 sseq12d r=RrrrRRR
5 1 4 rabeqel RTrRelsRRRRRels