Metamath Proof Explorer


Theorem eltrrels2

Description: Element of the class of transitive relations. (Contributed by Peter Mazsa, 22-Aug-2021)

Ref Expression
Assertion eltrrels2 R TrRels R R R R Rels

Proof

Step Hyp Ref Expression
1 dftrrels2 TrRels = r Rels | r r r
2 coideq r = R r r = R R
3 id r = R r = R
4 2 3 sseq12d r = R r r r R R R
5 1 4 rabeqel R TrRels R R R R Rels