Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Transitivity
eltrrels2
Next ⟩
eltrrels3
Metamath Proof Explorer
Ascii
Unicode
Theorem
eltrrels2
Description:
Element of the class of transitive relations.
(Contributed by
Peter Mazsa
, 22-Aug-2021)
Ref
Expression
Assertion
eltrrels2
⊢
R
∈
TrRels
↔
R
∘
R
⊆
R
∧
R
∈
Rels
Proof
Step
Hyp
Ref
Expression
1
dftrrels2
⊢
TrRels
=
r
∈
Rels
|
r
∘
r
⊆
r
2
coideq
⊢
r
=
R
→
r
∘
r
=
R
∘
R
3
id
⊢
r
=
R
→
r
=
R
4
2
3
sseq12d
⊢
r
=
R
→
r
∘
r
⊆
r
↔
R
∘
R
⊆
R
5
1
4
rabeqel
⊢
R
∈
TrRels
↔
R
∘
R
⊆
R
∧
R
∈
Rels