Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Transitivity
eltrrels3
Next ⟩
eltrrelsrel
Metamath Proof Explorer
Ascii
Unicode
Theorem
eltrrels3
Description:
Element of the class of transitive relations.
(Contributed by
Peter Mazsa
, 22-Aug-2021)
Ref
Expression
Assertion
eltrrels3
⊢
R
∈
TrRels
↔
∀
x
∀
y
∀
z
x
R
y
∧
y
R
z
→
x
R
z
∧
R
∈
Rels
Proof
Step
Hyp
Ref
Expression
1
dftrrels3
⊢
TrRels
=
r
∈
Rels
|
∀
x
∀
y
∀
z
x
r
y
∧
y
r
z
→
x
r
z
2
breq
⊢
r
=
R
→
x
r
y
↔
x
R
y
3
breq
⊢
r
=
R
→
y
r
z
↔
y
R
z
4
2
3
anbi12d
⊢
r
=
R
→
x
r
y
∧
y
r
z
↔
x
R
y
∧
y
R
z
5
breq
⊢
r
=
R
→
x
r
z
↔
x
R
z
6
4
5
imbi12d
⊢
r
=
R
→
x
r
y
∧
y
r
z
→
x
r
z
↔
x
R
y
∧
y
R
z
→
x
R
z
7
6
2albidv
⊢
r
=
R
→
∀
y
∀
z
x
r
y
∧
y
r
z
→
x
r
z
↔
∀
y
∀
z
x
R
y
∧
y
R
z
→
x
R
z
8
7
albidv
⊢
r
=
R
→
∀
x
∀
y
∀
z
x
r
y
∧
y
r
z
→
x
r
z
↔
∀
x
∀
y
∀
z
x
R
y
∧
y
R
z
→
x
R
z
9
1
8
rabeqel
⊢
R
∈
TrRels
↔
∀
x
∀
y
∀
z
x
R
y
∧
y
R
z
→
x
R
z
∧
R
∈
Rels