Metamath Proof Explorer


Theorem eltrrels3

Description: Element of the class of transitive relations. (Contributed by Peter Mazsa, 22-Aug-2021)

Ref Expression
Assertion eltrrels3 ( 𝑅 ∈ TrRels ↔ ( ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ∧ 𝑅 ∈ Rels ) )

Proof

Step Hyp Ref Expression
1 dftrrels3 TrRels = { 𝑟 ∈ Rels ∣ ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) }
2 breq ( 𝑟 = 𝑅 → ( 𝑥 𝑟 𝑦𝑥 𝑅 𝑦 ) )
3 breq ( 𝑟 = 𝑅 → ( 𝑦 𝑟 𝑧𝑦 𝑅 𝑧 ) )
4 2 3 anbi12d ( 𝑟 = 𝑅 → ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑧 ) ↔ ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) ) )
5 breq ( 𝑟 = 𝑅 → ( 𝑥 𝑟 𝑧𝑥 𝑅 𝑧 ) )
6 4 5 imbi12d ( 𝑟 = 𝑅 → ( ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ↔ ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) )
7 6 2albidv ( 𝑟 = 𝑅 → ( ∀ 𝑦𝑧 ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ↔ ∀ 𝑦𝑧 ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) )
8 7 albidv ( 𝑟 = 𝑅 → ( ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ↔ ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) )
9 1 8 rabeqel ( 𝑅 ∈ TrRels ↔ ( ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ∧ 𝑅 ∈ Rels ) )