Step |
Hyp |
Ref |
Expression |
1 |
|
dftrrels3 |
⊢ TrRels = { 𝑟 ∈ Rels ∣ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) } |
2 |
|
breq |
⊢ ( 𝑟 = 𝑅 → ( 𝑥 𝑟 𝑦 ↔ 𝑥 𝑅 𝑦 ) ) |
3 |
|
breq |
⊢ ( 𝑟 = 𝑅 → ( 𝑦 𝑟 𝑧 ↔ 𝑦 𝑅 𝑧 ) ) |
4 |
2 3
|
anbi12d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) ↔ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ) ) |
5 |
|
breq |
⊢ ( 𝑟 = 𝑅 → ( 𝑥 𝑟 𝑧 ↔ 𝑥 𝑅 𝑧 ) ) |
6 |
4 5
|
imbi12d |
⊢ ( 𝑟 = 𝑅 → ( ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ↔ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
7 |
6
|
2albidv |
⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ↔ ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
8 |
7
|
albidv |
⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑟 𝑦 ∧ 𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) ) |
9 |
1 8
|
rabeqel |
⊢ ( 𝑅 ∈ TrRels ↔ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ∧ 𝑅 ∈ Rels ) ) |