Metamath Proof Explorer


Theorem breq

Description: Equality theorem for binary relations. (Contributed by NM, 4-Jun-1995)

Ref Expression
Assertion breq ( 𝑅 = 𝑆 → ( 𝐴 𝑅 𝐵𝐴 𝑆 𝐵 ) )

Proof

Step Hyp Ref Expression
1 eleq2 ( 𝑅 = 𝑆 → ( ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑆 ) )
2 df-br ( 𝐴 𝑅 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑅 )
3 df-br ( 𝐴 𝑆 𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ 𝑆 )
4 1 2 3 3bitr4g ( 𝑅 = 𝑆 → ( 𝐴 𝑅 𝐵𝐴 𝑆 𝐵 ) )