Metamath Proof Explorer


Theorem dftrrels3

Description: Alternate definition of the class of transitive relations. (Contributed by Peter Mazsa, 22-Jul-2021)

Ref Expression
Assertion dftrrels3 TrRels = { 𝑟 ∈ Rels ∣ ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) }

Proof

Step Hyp Ref Expression
1 dftrrels2 TrRels = { 𝑟 ∈ Rels ∣ ( 𝑟𝑟 ) ⊆ 𝑟 }
2 cotr ( ( 𝑟𝑟 ) ⊆ 𝑟 ↔ ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) )
3 1 2 rabbieq TrRels = { 𝑟 ∈ Rels ∣ ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝑟 𝑦𝑦 𝑟 𝑧 ) → 𝑥 𝑟 𝑧 ) }