Metamath Proof Explorer


Theorem dftrrel2

Description: Alternate definition of the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021)

Ref Expression
Assertion dftrrel2 ( TrRel 𝑅 ↔ ( ( 𝑅𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) )

Proof

Step Hyp Ref Expression
1 df-trrel ( TrRel 𝑅 ↔ ( ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ∘ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) ⊆ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ∧ Rel 𝑅 ) )
2 dfrel6 ( Rel 𝑅 ↔ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) = 𝑅 )
3 2 biimpi ( Rel 𝑅 → ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) = 𝑅 )
4 3 3 coeq12d ( Rel 𝑅 → ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ∘ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) = ( 𝑅𝑅 ) )
5 4 3 sseq12d ( Rel 𝑅 → ( ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ∘ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) ⊆ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ↔ ( 𝑅𝑅 ) ⊆ 𝑅 ) )
6 5 pm5.32ri ( ( ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ∘ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) ⊆ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ∧ Rel 𝑅 ) ↔ ( ( 𝑅𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) )
7 1 6 bitri ( TrRel 𝑅 ↔ ( ( 𝑅𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) )