Step |
Hyp |
Ref |
Expression |
1 |
|
df-trrel |
⊢ ( TrRel 𝑅 ↔ ( ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ∘ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) ⊆ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ∧ Rel 𝑅 ) ) |
2 |
|
dfrel6 |
⊢ ( Rel 𝑅 ↔ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) = 𝑅 ) |
3 |
2
|
biimpi |
⊢ ( Rel 𝑅 → ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) = 𝑅 ) |
4 |
3 3
|
coeq12d |
⊢ ( Rel 𝑅 → ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ∘ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) = ( 𝑅 ∘ 𝑅 ) ) |
5 |
4 3
|
sseq12d |
⊢ ( Rel 𝑅 → ( ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ∘ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) ⊆ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ↔ ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) ) |
6 |
5
|
pm5.32ri |
⊢ ( ( ( ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ∘ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ) ⊆ ( 𝑅 ∩ ( dom 𝑅 × ran 𝑅 ) ) ∧ Rel 𝑅 ) ↔ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) ) |
7 |
1 6
|
bitri |
⊢ ( TrRel 𝑅 ↔ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) ) |