| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-trrel |
|- ( TrRel R <-> ( ( ( R i^i ( dom R X. ran R ) ) o. ( R i^i ( dom R X. ran R ) ) ) C_ ( R i^i ( dom R X. ran R ) ) /\ Rel R ) ) |
| 2 |
|
dfrel6 |
|- ( Rel R <-> ( R i^i ( dom R X. ran R ) ) = R ) |
| 3 |
2
|
biimpi |
|- ( Rel R -> ( R i^i ( dom R X. ran R ) ) = R ) |
| 4 |
3 3
|
coeq12d |
|- ( Rel R -> ( ( R i^i ( dom R X. ran R ) ) o. ( R i^i ( dom R X. ran R ) ) ) = ( R o. R ) ) |
| 5 |
4 3
|
sseq12d |
|- ( Rel R -> ( ( ( R i^i ( dom R X. ran R ) ) o. ( R i^i ( dom R X. ran R ) ) ) C_ ( R i^i ( dom R X. ran R ) ) <-> ( R o. R ) C_ R ) ) |
| 6 |
5
|
pm5.32ri |
|- ( ( ( ( R i^i ( dom R X. ran R ) ) o. ( R i^i ( dom R X. ran R ) ) ) C_ ( R i^i ( dom R X. ran R ) ) /\ Rel R ) <-> ( ( R o. R ) C_ R /\ Rel R ) ) |
| 7 |
1 6
|
bitri |
|- ( TrRel R <-> ( ( R o. R ) C_ R /\ Rel R ) ) |