Metamath Proof Explorer


Theorem dftrrel3

Description: Alternate definition of the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021)

Ref Expression
Assertion dftrrel3 ( TrRel 𝑅 ↔ ( ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ∧ Rel 𝑅 ) )

Proof

Step Hyp Ref Expression
1 dftrrel2 ( TrRel 𝑅 ↔ ( ( 𝑅𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) )
2 cotr ( ( 𝑅𝑅 ) ⊆ 𝑅 ↔ ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) )
3 2 anbi1i ( ( ( 𝑅𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) ↔ ( ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ∧ Rel 𝑅 ) )
4 1 3 bitri ( TrRel 𝑅 ↔ ( ∀ 𝑥𝑦𝑧 ( ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ∧ Rel 𝑅 ) )