Description: Alternate definition of the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | dftrrel3 | ⊢ ( TrRel 𝑅 ↔ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ∧ Rel 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftrrel2 | ⊢ ( TrRel 𝑅 ↔ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) ) | |
2 | cotr | ⊢ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ↔ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ) | |
3 | 2 | anbi1i | ⊢ ( ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) ↔ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ∧ Rel 𝑅 ) ) |
4 | 1 3 | bitri | ⊢ ( TrRel 𝑅 ↔ ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ∧ Rel 𝑅 ) ) |