Description: Element of the class of transitive relations. (Contributed by Peter Mazsa, 22-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | eltrrels2 | ⊢ ( 𝑅 ∈ TrRels ↔ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ 𝑅 ∈ Rels ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftrrels2 | ⊢ TrRels = { 𝑟 ∈ Rels ∣ ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 } | |
2 | coideq | ⊢ ( 𝑟 = 𝑅 → ( 𝑟 ∘ 𝑟 ) = ( 𝑅 ∘ 𝑅 ) ) | |
3 | id | ⊢ ( 𝑟 = 𝑅 → 𝑟 = 𝑅 ) | |
4 | 2 3 | sseq12d | ⊢ ( 𝑟 = 𝑅 → ( ( 𝑟 ∘ 𝑟 ) ⊆ 𝑟 ↔ ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ) ) |
5 | 1 4 | rabeqel | ⊢ ( 𝑅 ∈ TrRels ↔ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ 𝑅 ∈ Rels ) ) |