Description: Element of the class of transitive relations. (Contributed by Peter Mazsa, 22-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | eltrrels2 | |- ( R e. TrRels <-> ( ( R o. R ) C_ R /\ R e. Rels ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftrrels2 | |- TrRels = { r e. Rels | ( r o. r ) C_ r } |
|
2 | coideq | |- ( r = R -> ( r o. r ) = ( R o. R ) ) |
|
3 | id | |- ( r = R -> r = R ) |
|
4 | 2 3 | sseq12d | |- ( r = R -> ( ( r o. r ) C_ r <-> ( R o. R ) C_ R ) ) |
5 | 1 4 | rabeqel | |- ( R e. TrRels <-> ( ( R o. R ) C_ R /\ R e. Rels ) ) |