Metamath Proof Explorer


Theorem eltrrelsrel

Description: For sets, being an element of the class of transitive relations is equivalent to satisfying the transitive relation predicate. (Contributed by Peter Mazsa, 22-Aug-2021)

Ref Expression
Assertion eltrrelsrel ( 𝑅𝑉 → ( 𝑅 ∈ TrRels ↔ TrRel 𝑅 ) )

Proof

Step Hyp Ref Expression
1 elrelsrel ( 𝑅𝑉 → ( 𝑅 ∈ Rels ↔ Rel 𝑅 ) )
2 1 anbi2d ( 𝑅𝑉 → ( ( ( 𝑅𝑅 ) ⊆ 𝑅𝑅 ∈ Rels ) ↔ ( ( 𝑅𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) ) )
3 eltrrels2 ( 𝑅 ∈ TrRels ↔ ( ( 𝑅𝑅 ) ⊆ 𝑅𝑅 ∈ Rels ) )
4 dftrrel2 ( TrRel 𝑅 ↔ ( ( 𝑅𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) )
5 2 3 4 3bitr4g ( 𝑅𝑉 → ( 𝑅 ∈ TrRels ↔ TrRel 𝑅 ) )