Metamath Proof Explorer


Theorem trreleq

Description: Equality theorem for the transitive relation predicate. (Contributed by Peter Mazsa, 15-Apr-2019) (Revised by Peter Mazsa, 23-Sep-2021)

Ref Expression
Assertion trreleq ( 𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆 ) )

Proof

Step Hyp Ref Expression
1 coideq ( 𝑅 = 𝑆 → ( 𝑅𝑅 ) = ( 𝑆𝑆 ) )
2 id ( 𝑅 = 𝑆𝑅 = 𝑆 )
3 1 2 sseq12d ( 𝑅 = 𝑆 → ( ( 𝑅𝑅 ) ⊆ 𝑅 ↔ ( 𝑆𝑆 ) ⊆ 𝑆 ) )
4 releq ( 𝑅 = 𝑆 → ( Rel 𝑅 ↔ Rel 𝑆 ) )
5 3 4 anbi12d ( 𝑅 = 𝑆 → ( ( ( 𝑅𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) ↔ ( ( 𝑆𝑆 ) ⊆ 𝑆 ∧ Rel 𝑆 ) ) )
6 dftrrel2 ( TrRel 𝑅 ↔ ( ( 𝑅𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) )
7 dftrrel2 ( TrRel 𝑆 ↔ ( ( 𝑆𝑆 ) ⊆ 𝑆 ∧ Rel 𝑆 ) )
8 5 6 7 3bitr4g ( 𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆 ) )