Description: Equality theorem for the transitive relation predicate. (Contributed by Peter Mazsa, 15-Apr-2019) (Revised by Peter Mazsa, 23-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trreleq | ⊢ ( 𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coideq | ⊢ ( 𝑅 = 𝑆 → ( 𝑅 ∘ 𝑅 ) = ( 𝑆 ∘ 𝑆 ) ) | |
| 2 | id | ⊢ ( 𝑅 = 𝑆 → 𝑅 = 𝑆 ) | |
| 3 | 1 2 | sseq12d | ⊢ ( 𝑅 = 𝑆 → ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ↔ ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ) ) |
| 4 | releq | ⊢ ( 𝑅 = 𝑆 → ( Rel 𝑅 ↔ Rel 𝑆 ) ) | |
| 5 | 3 4 | anbi12d | ⊢ ( 𝑅 = 𝑆 → ( ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) ↔ ( ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ∧ Rel 𝑆 ) ) ) |
| 6 | dftrrel2 | ⊢ ( TrRel 𝑅 ↔ ( ( 𝑅 ∘ 𝑅 ) ⊆ 𝑅 ∧ Rel 𝑅 ) ) | |
| 7 | dftrrel2 | ⊢ ( TrRel 𝑆 ↔ ( ( 𝑆 ∘ 𝑆 ) ⊆ 𝑆 ∧ Rel 𝑆 ) ) | |
| 8 | 5 6 7 | 3bitr4g | ⊢ ( 𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆 ) ) |