Metamath Proof Explorer


Theorem trreleq

Description: Equality theorem for the transitive relation predicate. (Contributed by Peter Mazsa, 15-Apr-2019) (Revised by Peter Mazsa, 23-Sep-2021)

Ref Expression
Assertion trreleq
|- ( R = S -> ( TrRel R <-> TrRel S ) )

Proof

Step Hyp Ref Expression
1 coideq
 |-  ( R = S -> ( R o. R ) = ( S o. S ) )
2 id
 |-  ( R = S -> R = S )
3 1 2 sseq12d
 |-  ( R = S -> ( ( R o. R ) C_ R <-> ( S o. S ) C_ S ) )
4 releq
 |-  ( R = S -> ( Rel R <-> Rel S ) )
5 3 4 anbi12d
 |-  ( R = S -> ( ( ( R o. R ) C_ R /\ Rel R ) <-> ( ( S o. S ) C_ S /\ Rel S ) ) )
6 dftrrel2
 |-  ( TrRel R <-> ( ( R o. R ) C_ R /\ Rel R ) )
7 dftrrel2
 |-  ( TrRel S <-> ( ( S o. S ) C_ S /\ Rel S ) )
8 5 6 7 3bitr4g
 |-  ( R = S -> ( TrRel R <-> TrRel S ) )