Metamath Proof Explorer


Theorem trrelressn

Description: Any class ' R ' restricted to the singleton of the class ' A ' (see ressn2 ) is transitive. (Contributed by Peter Mazsa, 17-Jun-2024)

Ref Expression
Assertion trrelressn
|- TrRel ( R |` { A } )

Proof

Step Hyp Ref Expression
1 trressn
 |-  A. x A. y A. z ( ( x ( R |` { A } ) y /\ y ( R |` { A } ) z ) -> x ( R |` { A } ) z )
2 relres
 |-  Rel ( R |` { A } )
3 dftrrel3
 |-  ( TrRel ( R |` { A } ) <-> ( A. x A. y A. z ( ( x ( R |` { A } ) y /\ y ( R |` { A } ) z ) -> x ( R |` { A } ) z ) /\ Rel ( R |` { A } ) ) )
4 1 2 3 mpbir2an
 |-  TrRel ( R |` { A } )