Description: Any class ' R ' restricted to the singleton of the class ' A ' (see ressn2 ) is transitive. (Contributed by Peter Mazsa, 17-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | trrelressn | |- TrRel ( R |` { A } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trressn | |- A. x A. y A. z ( ( x ( R |` { A } ) y /\ y ( R |` { A } ) z ) -> x ( R |` { A } ) z ) |
|
2 | relres | |- Rel ( R |` { A } ) |
|
3 | dftrrel3 | |- ( TrRel ( R |` { A } ) <-> ( A. x A. y A. z ( ( x ( R |` { A } ) y /\ y ( R |` { A } ) z ) -> x ( R |` { A } ) z ) /\ Rel ( R |` { A } ) ) ) |
|
4 | 1 2 3 | mpbir2an | |- TrRel ( R |` { A } ) |