Metamath Proof Explorer


Theorem trrelressn

Description: Any class ' R ' restricted to the singleton of the class ' A ' (see ressn2 ) is transitive. (Contributed by Peter Mazsa, 17-Jun-2024)

Ref Expression
Assertion trrelressn TrRelRA

Proof

Step Hyp Ref Expression
1 trressn xyzxRAyyRAzxRAz
2 relres RelRA
3 dftrrel3 TrRelRAxyzxRAyyRAzxRAzRelRA
4 1 2 3 mpbir2an TrRelRA