Step |
Hyp |
Ref |
Expression |
1 |
|
an3 |
|- ( ( ( x = A /\ A R y ) /\ ( y = A /\ A R z ) ) -> ( x = A /\ A R z ) ) |
2 |
|
eqbrb |
|- ( ( x = A /\ x R y ) <-> ( x = A /\ A R y ) ) |
3 |
|
eqbrb |
|- ( ( y = A /\ y R z ) <-> ( y = A /\ A R z ) ) |
4 |
2 3
|
anbi12i |
|- ( ( ( x = A /\ x R y ) /\ ( y = A /\ y R z ) ) <-> ( ( x = A /\ A R y ) /\ ( y = A /\ A R z ) ) ) |
5 |
|
eqbrb |
|- ( ( x = A /\ x R z ) <-> ( x = A /\ A R z ) ) |
6 |
1 4 5
|
3imtr4i |
|- ( ( ( x = A /\ x R y ) /\ ( y = A /\ y R z ) ) -> ( x = A /\ x R z ) ) |
7 |
|
brressn |
|- ( ( x e. _V /\ y e. _V ) -> ( x ( R |` { A } ) y <-> ( x = A /\ x R y ) ) ) |
8 |
7
|
el2v |
|- ( x ( R |` { A } ) y <-> ( x = A /\ x R y ) ) |
9 |
|
brressn |
|- ( ( y e. _V /\ z e. _V ) -> ( y ( R |` { A } ) z <-> ( y = A /\ y R z ) ) ) |
10 |
9
|
el2v |
|- ( y ( R |` { A } ) z <-> ( y = A /\ y R z ) ) |
11 |
8 10
|
anbi12i |
|- ( ( x ( R |` { A } ) y /\ y ( R |` { A } ) z ) <-> ( ( x = A /\ x R y ) /\ ( y = A /\ y R z ) ) ) |
12 |
|
brressn |
|- ( ( x e. _V /\ z e. _V ) -> ( x ( R |` { A } ) z <-> ( x = A /\ x R z ) ) ) |
13 |
12
|
el2v |
|- ( x ( R |` { A } ) z <-> ( x = A /\ x R z ) ) |
14 |
6 11 13
|
3imtr4i |
|- ( ( x ( R |` { A } ) y /\ y ( R |` { A } ) z ) -> x ( R |` { A } ) z ) |
15 |
14
|
gen2 |
|- A. y A. z ( ( x ( R |` { A } ) y /\ y ( R |` { A } ) z ) -> x ( R |` { A } ) z ) |
16 |
15
|
ax-gen |
|- A. x A. y A. z ( ( x ( R |` { A } ) y /\ y ( R |` { A } ) z ) -> x ( R |` { A } ) z ) |