| Step |
Hyp |
Ref |
Expression |
| 1 |
|
an3 |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑦 ) ∧ ( 𝑦 = 𝐴 ∧ 𝐴 𝑅 𝑧 ) ) → ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑧 ) ) |
| 2 |
|
eqbrb |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑦 ) ↔ ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑦 ) ) |
| 3 |
|
eqbrb |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝑦 𝑅 𝑧 ) ↔ ( 𝑦 = 𝐴 ∧ 𝐴 𝑅 𝑧 ) ) |
| 4 |
2 3
|
anbi12i |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑦 ) ∧ ( 𝑦 = 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑦 ) ∧ ( 𝑦 = 𝐴 ∧ 𝐴 𝑅 𝑧 ) ) ) |
| 5 |
|
eqbrb |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑧 ) ↔ ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑧 ) ) |
| 6 |
1 4 5
|
3imtr4i |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑦 ) ∧ ( 𝑦 = 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) → ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑧 ) ) |
| 7 |
|
brressn |
⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ↔ ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑦 ) ) ) |
| 8 |
7
|
el2v |
⊢ ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ↔ ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑦 ) ) |
| 9 |
|
brressn |
⊢ ( ( 𝑦 ∈ V ∧ 𝑧 ∈ V ) → ( 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ↔ ( 𝑦 = 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) |
| 10 |
9
|
el2v |
⊢ ( 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ↔ ( 𝑦 = 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) |
| 11 |
8 10
|
anbi12i |
⊢ ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ∧ 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑦 ) ∧ ( 𝑦 = 𝐴 ∧ 𝑦 𝑅 𝑧 ) ) ) |
| 12 |
|
brressn |
⊢ ( ( 𝑥 ∈ V ∧ 𝑧 ∈ V ) → ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ↔ ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑧 ) ) ) |
| 13 |
12
|
el2v |
⊢ ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ↔ ( 𝑥 = 𝐴 ∧ 𝑥 𝑅 𝑧 ) ) |
| 14 |
6 11 13
|
3imtr4i |
⊢ ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ∧ 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) → 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) |
| 15 |
14
|
gen2 |
⊢ ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ∧ 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) → 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) |
| 16 |
15
|
ax-gen |
⊢ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ∧ 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) → 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑧 ) |