Metamath Proof Explorer


Theorem relbrcoss

Description: A and B are cosets by relation R : a binary relation. (Contributed by Peter Mazsa, 22-Apr-2021)

Ref Expression
Assertion relbrcoss ( ( 𝐴𝑉𝐵𝑊 ) → ( Rel 𝑅 → ( 𝐴𝑅 𝐵 ↔ ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) )

Proof

Step Hyp Ref Expression
1 resdm ( Rel 𝑅 → ( 𝑅 ↾ dom 𝑅 ) = 𝑅 )
2 1 cosseqd ( Rel 𝑅 → ≀ ( 𝑅 ↾ dom 𝑅 ) = ≀ 𝑅 )
3 2 breqd ( Rel 𝑅 → ( 𝐴 ≀ ( 𝑅 ↾ dom 𝑅 ) 𝐵𝐴𝑅 𝐵 ) )
4 3 adantl ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ Rel 𝑅 ) → ( 𝐴 ≀ ( 𝑅 ↾ dom 𝑅 ) 𝐵𝐴𝑅 𝐵 ) )
5 br1cossres2 ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ≀ ( 𝑅 ↾ dom 𝑅 ) 𝐵 ↔ ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅𝐵 ∈ [ 𝑥 ] 𝑅 ) ) )
6 5 adantr ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ Rel 𝑅 ) → ( 𝐴 ≀ ( 𝑅 ↾ dom 𝑅 ) 𝐵 ↔ ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅𝐵 ∈ [ 𝑥 ] 𝑅 ) ) )
7 4 6 bitr3d ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ Rel 𝑅 ) → ( 𝐴𝑅 𝐵 ↔ ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅𝐵 ∈ [ 𝑥 ] 𝑅 ) ) )
8 7 ex ( ( 𝐴𝑉𝐵𝑊 ) → ( Rel 𝑅 → ( 𝐴𝑅 𝐵 ↔ ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) )