Step |
Hyp |
Ref |
Expression |
1 |
|
resdm |
⊢ ( Rel 𝑅 → ( 𝑅 ↾ dom 𝑅 ) = 𝑅 ) |
2 |
1
|
cosseqd |
⊢ ( Rel 𝑅 → ≀ ( 𝑅 ↾ dom 𝑅 ) = ≀ 𝑅 ) |
3 |
2
|
breqd |
⊢ ( Rel 𝑅 → ( 𝐴 ≀ ( 𝑅 ↾ dom 𝑅 ) 𝐵 ↔ 𝐴 ≀ 𝑅 𝐵 ) ) |
4 |
3
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Rel 𝑅 ) → ( 𝐴 ≀ ( 𝑅 ↾ dom 𝑅 ) 𝐵 ↔ 𝐴 ≀ 𝑅 𝐵 ) ) |
5 |
|
br1cossres2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ≀ ( 𝑅 ↾ dom 𝑅 ) 𝐵 ↔ ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) |
6 |
5
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Rel 𝑅 ) → ( 𝐴 ≀ ( 𝑅 ↾ dom 𝑅 ) 𝐵 ↔ ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) |
7 |
4 6
|
bitr3d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ Rel 𝑅 ) → ( 𝐴 ≀ 𝑅 𝐵 ↔ ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) |
8 |
7
|
ex |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( Rel 𝑅 → ( 𝐴 ≀ 𝑅 𝐵 ↔ ∃ 𝑥 ∈ dom 𝑅 ( 𝐴 ∈ [ 𝑥 ] 𝑅 ∧ 𝐵 ∈ [ 𝑥 ] 𝑅 ) ) ) ) |