| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resdm |
|- ( Rel R -> ( R |` dom R ) = R ) |
| 2 |
1
|
cosseqd |
|- ( Rel R -> ,~ ( R |` dom R ) = ,~ R ) |
| 3 |
2
|
breqd |
|- ( Rel R -> ( A ,~ ( R |` dom R ) B <-> A ,~ R B ) ) |
| 4 |
3
|
adantl |
|- ( ( ( A e. V /\ B e. W ) /\ Rel R ) -> ( A ,~ ( R |` dom R ) B <-> A ,~ R B ) ) |
| 5 |
|
br1cossres2 |
|- ( ( A e. V /\ B e. W ) -> ( A ,~ ( R |` dom R ) B <-> E. x e. dom R ( A e. [ x ] R /\ B e. [ x ] R ) ) ) |
| 6 |
5
|
adantr |
|- ( ( ( A e. V /\ B e. W ) /\ Rel R ) -> ( A ,~ ( R |` dom R ) B <-> E. x e. dom R ( A e. [ x ] R /\ B e. [ x ] R ) ) ) |
| 7 |
4 6
|
bitr3d |
|- ( ( ( A e. V /\ B e. W ) /\ Rel R ) -> ( A ,~ R B <-> E. x e. dom R ( A e. [ x ] R /\ B e. [ x ] R ) ) ) |
| 8 |
7
|
ex |
|- ( ( A e. V /\ B e. W ) -> ( Rel R -> ( A ,~ R B <-> E. x e. dom R ( A e. [ x ] R /\ B e. [ x ] R ) ) ) ) |