Metamath Proof Explorer


Theorem br1cossres2

Description: B and C are cosets by a restriction: a binary relation. (Contributed by Peter Mazsa, 3-Jan-2018)

Ref Expression
Assertion br1cossres2
|- ( ( B e. V /\ C e. W ) -> ( B ,~ ( R |` A ) C <-> E. x e. A ( B e. [ x ] R /\ C e. [ x ] R ) ) )

Proof

Step Hyp Ref Expression
1 br1cossres
 |-  ( ( B e. V /\ C e. W ) -> ( B ,~ ( R |` A ) C <-> E. x e. A ( x R B /\ x R C ) ) )
2 exanres3
 |-  ( ( B e. V /\ C e. W ) -> ( E. x e. A ( B e. [ x ] R /\ C e. [ x ] R ) <-> E. x e. A ( x R B /\ x R C ) ) )
3 1 2 bitr4d
 |-  ( ( B e. V /\ C e. W ) -> ( B ,~ ( R |` A ) C <-> E. x e. A ( B e. [ x ] R /\ C e. [ x ] R ) ) )