Description: B and C are cosets by a restriction: a binary relation. (Contributed by Peter Mazsa, 3-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | br1cossres2 | |- ( ( B e. V /\ C e. W ) -> ( B ,~ ( R |` A ) C <-> E. x e. A ( B e. [ x ] R /\ C e. [ x ] R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | br1cossres | |- ( ( B e. V /\ C e. W ) -> ( B ,~ ( R |` A ) C <-> E. x e. A ( x R B /\ x R C ) ) ) |
|
| 2 | exanres3 | |- ( ( B e. V /\ C e. W ) -> ( E. x e. A ( B e. [ x ] R /\ C e. [ x ] R ) <-> E. x e. A ( x R B /\ x R C ) ) ) |
|
| 3 | 1 2 | bitr4d | |- ( ( B e. V /\ C e. W ) -> ( B ,~ ( R |` A ) C <-> E. x e. A ( B e. [ x ] R /\ C e. [ x ] R ) ) ) |