Description: B and C are cosets by a restriction: a binary relation. (Contributed by Peter Mazsa, 3-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | br1cossres2 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐵 ≀ ( 𝑅 ↾ 𝐴 ) 𝐶 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝐵 ∈ [ 𝑥 ] 𝑅 ∧ 𝐶 ∈ [ 𝑥 ] 𝑅 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br1cossres | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐵 ≀ ( 𝑅 ↾ 𝐴 ) 𝐶 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑥 𝑅 𝐵 ∧ 𝑥 𝑅 𝐶 ) ) ) | |
2 | exanres3 | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( ∃ 𝑥 ∈ 𝐴 ( 𝐵 ∈ [ 𝑥 ] 𝑅 ∧ 𝐶 ∈ [ 𝑥 ] 𝑅 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑥 𝑅 𝐵 ∧ 𝑥 𝑅 𝐶 ) ) ) | |
3 | 1 2 | bitr4d | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊 ) → ( 𝐵 ≀ ( 𝑅 ↾ 𝐴 ) 𝐶 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝐵 ∈ [ 𝑥 ] 𝑅 ∧ 𝐶 ∈ [ 𝑥 ] 𝑅 ) ) ) |