Metamath Proof Explorer


Theorem br1cossres2

Description: B and C are cosets by a restriction: a binary relation. (Contributed by Peter Mazsa, 3-Jan-2018)

Ref Expression
Assertion br1cossres2 ( ( 𝐵𝑉𝐶𝑊 ) → ( 𝐵 ≀ ( 𝑅𝐴 ) 𝐶 ↔ ∃ 𝑥𝐴 ( 𝐵 ∈ [ 𝑥 ] 𝑅𝐶 ∈ [ 𝑥 ] 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 br1cossres ( ( 𝐵𝑉𝐶𝑊 ) → ( 𝐵 ≀ ( 𝑅𝐴 ) 𝐶 ↔ ∃ 𝑥𝐴 ( 𝑥 𝑅 𝐵𝑥 𝑅 𝐶 ) ) )
2 exanres3 ( ( 𝐵𝑉𝐶𝑊 ) → ( ∃ 𝑥𝐴 ( 𝐵 ∈ [ 𝑥 ] 𝑅𝐶 ∈ [ 𝑥 ] 𝑅 ) ↔ ∃ 𝑥𝐴 ( 𝑥 𝑅 𝐵𝑥 𝑅 𝐶 ) ) )
3 1 2 bitr4d ( ( 𝐵𝑉𝐶𝑊 ) → ( 𝐵 ≀ ( 𝑅𝐴 ) 𝐶 ↔ ∃ 𝑥𝐴 ( 𝐵 ∈ [ 𝑥 ] 𝑅𝐶 ∈ [ 𝑥 ] 𝑅 ) ) )