Metamath Proof Explorer


Theorem br1cossres

Description: B and C are cosets by a restriction: a binary relation. (Contributed by Peter Mazsa, 30-Dec-2018)

Ref Expression
Assertion br1cossres ( ( 𝐵𝑉𝐶𝑊 ) → ( 𝐵 ≀ ( 𝑅𝐴 ) 𝐶 ↔ ∃ 𝑢𝐴 ( 𝑢 𝑅 𝐵𝑢 𝑅 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 brcoss ( ( 𝐵𝑉𝐶𝑊 ) → ( 𝐵 ≀ ( 𝑅𝐴 ) 𝐶 ↔ ∃ 𝑢 ( 𝑢 ( 𝑅𝐴 ) 𝐵𝑢 ( 𝑅𝐴 ) 𝐶 ) ) )
2 exanres ( ( 𝐵𝑉𝐶𝑊 ) → ( ∃ 𝑢 ( 𝑢 ( 𝑅𝐴 ) 𝐵𝑢 ( 𝑅𝐴 ) 𝐶 ) ↔ ∃ 𝑢𝐴 ( 𝑢 𝑅 𝐵𝑢 𝑅 𝐶 ) ) )
3 1 2 bitrd ( ( 𝐵𝑉𝐶𝑊 ) → ( 𝐵 ≀ ( 𝑅𝐴 ) 𝐶 ↔ ∃ 𝑢𝐴 ( 𝑢 𝑅 𝐵𝑢 𝑅 𝐶 ) ) )