Description: B and C are cosets by a restriction: a binary relation. (Contributed by Peter Mazsa, 30-Dec-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | br1cossres | |- ( ( B e. V /\ C e. W ) -> ( B ,~ ( R |` A ) C <-> E. u e. A ( u R B /\ u R C ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcoss | |- ( ( B e. V /\ C e. W ) -> ( B ,~ ( R |` A ) C <-> E. u ( u ( R |` A ) B /\ u ( R |` A ) C ) ) ) |
|
2 | exanres | |- ( ( B e. V /\ C e. W ) -> ( E. u ( u ( R |` A ) B /\ u ( R |` A ) C ) <-> E. u e. A ( u R B /\ u R C ) ) ) |
|
3 | 1 2 | bitrd | |- ( ( B e. V /\ C e. W ) -> ( B ,~ ( R |` A ) C <-> E. u e. A ( u R B /\ u R C ) ) ) |