Metamath Proof Explorer


Theorem br1cossres

Description: B and C are cosets by a restriction: a binary relation. (Contributed by Peter Mazsa, 30-Dec-2018)

Ref Expression
Assertion br1cossres
|- ( ( B e. V /\ C e. W ) -> ( B ,~ ( R |` A ) C <-> E. u e. A ( u R B /\ u R C ) ) )

Proof

Step Hyp Ref Expression
1 brcoss
 |-  ( ( B e. V /\ C e. W ) -> ( B ,~ ( R |` A ) C <-> E. u ( u ( R |` A ) B /\ u ( R |` A ) C ) ) )
2 exanres
 |-  ( ( B e. V /\ C e. W ) -> ( E. u ( u ( R |` A ) B /\ u ( R |` A ) C ) <-> E. u e. A ( u R B /\ u R C ) ) )
3 1 2 bitrd
 |-  ( ( B e. V /\ C e. W ) -> ( B ,~ ( R |` A ) C <-> E. u e. A ( u R B /\ u R C ) ) )