Metamath Proof Explorer


Theorem relbrcoss

Description: A and B are cosets by relation R : a binary relation. (Contributed by Peter Mazsa, 22-Apr-2021)

Ref Expression
Assertion relbrcoss A V B W Rel R A R B x dom R A x R B x R

Proof

Step Hyp Ref Expression
1 resdm Rel R R dom R = R
2 1 cosseqd Rel R R dom R = R
3 2 breqd Rel R A R dom R B A R B
4 3 adantl A V B W Rel R A R dom R B A R B
5 br1cossres2 A V B W A R dom R B x dom R A x R B x R
6 5 adantr A V B W Rel R A R dom R B x dom R A x R B x R
7 4 6 bitr3d A V B W Rel R A R B x dom R A x R B x R
8 7 ex A V B W Rel R A R B x dom R A x R B x R