Metamath Proof Explorer


Theorem relbrcoss

Description: A and B are cosets by relation R : a binary relation. (Contributed by Peter Mazsa, 22-Apr-2021)

Ref Expression
Assertion relbrcoss AVBWRelRARBxdomRAxRBxR

Proof

Step Hyp Ref Expression
1 resdm RelRRdomR=R
2 1 cosseqd RelRRdomR=R
3 2 breqd RelRARdomRBARB
4 3 adantl AVBWRelRARdomRBARB
5 br1cossres2 AVBWARdomRBxdomRAxRBxR
6 5 adantr AVBWRelRARdomRBxdomRAxRBxR
7 4 6 bitr3d AVBWRelRARBxdomRAxRBxR
8 7 ex AVBWRelRARBxdomRAxRBxR