Step |
Hyp |
Ref |
Expression |
1 |
|
inres |
|- ( R i^i ( S |` A ) ) = ( ( R i^i S ) |` A ) |
2 |
1
|
cosseqi |
|- ,~ ( R i^i ( S |` A ) ) = ,~ ( ( R i^i S ) |` A ) |
3 |
2
|
breqi |
|- ( B ,~ ( R i^i ( S |` A ) ) C <-> B ,~ ( ( R i^i S ) |` A ) C ) |
4 |
|
br1cossres |
|- ( ( B e. V /\ C e. W ) -> ( B ,~ ( ( R i^i S ) |` A ) C <-> E. u e. A ( u ( R i^i S ) B /\ u ( R i^i S ) C ) ) ) |
5 |
|
brin |
|- ( u ( R i^i S ) B <-> ( u R B /\ u S B ) ) |
6 |
|
brin |
|- ( u ( R i^i S ) C <-> ( u R C /\ u S C ) ) |
7 |
5 6
|
anbi12i |
|- ( ( u ( R i^i S ) B /\ u ( R i^i S ) C ) <-> ( ( u R B /\ u S B ) /\ ( u R C /\ u S C ) ) ) |
8 |
|
an2anr |
|- ( ( ( u R B /\ u S B ) /\ ( u R C /\ u S C ) ) <-> ( ( u S B /\ u R B ) /\ ( u S C /\ u R C ) ) ) |
9 |
7 8
|
bitri |
|- ( ( u ( R i^i S ) B /\ u ( R i^i S ) C ) <-> ( ( u S B /\ u R B ) /\ ( u S C /\ u R C ) ) ) |
10 |
9
|
rexbii |
|- ( E. u e. A ( u ( R i^i S ) B /\ u ( R i^i S ) C ) <-> E. u e. A ( ( u S B /\ u R B ) /\ ( u S C /\ u R C ) ) ) |
11 |
4 10
|
bitrdi |
|- ( ( B e. V /\ C e. W ) -> ( B ,~ ( ( R i^i S ) |` A ) C <-> E. u e. A ( ( u S B /\ u R B ) /\ ( u S C /\ u R C ) ) ) ) |
12 |
3 11
|
syl5bb |
|- ( ( B e. V /\ C e. W ) -> ( B ,~ ( R i^i ( S |` A ) ) C <-> E. u e. A ( ( u S B /\ u R B ) /\ ( u S C /\ u R C ) ) ) ) |