Step |
Hyp |
Ref |
Expression |
1 |
|
xrnres2 |
|- ( ( R |X. S ) |` A ) = ( R |X. ( S |` A ) ) |
2 |
1
|
cosseqi |
|- ,~ ( ( R |X. S ) |` A ) = ,~ ( R |X. ( S |` A ) ) |
3 |
2
|
breqi |
|- ( <. B , C >. ,~ ( ( R |X. S ) |` A ) <. D , E >. <-> <. B , C >. ,~ ( R |X. ( S |` A ) ) <. D , E >. ) |
4 |
|
opex |
|- <. B , C >. e. _V |
5 |
|
opex |
|- <. D , E >. e. _V |
6 |
|
br1cossres |
|- ( ( <. B , C >. e. _V /\ <. D , E >. e. _V ) -> ( <. B , C >. ,~ ( ( R |X. S ) |` A ) <. D , E >. <-> E. u e. A ( u ( R |X. S ) <. B , C >. /\ u ( R |X. S ) <. D , E >. ) ) ) |
7 |
4 5 6
|
mp2an |
|- ( <. B , C >. ,~ ( ( R |X. S ) |` A ) <. D , E >. <-> E. u e. A ( u ( R |X. S ) <. B , C >. /\ u ( R |X. S ) <. D , E >. ) ) |
8 |
|
brxrn |
|- ( ( u e. _V /\ B e. V /\ C e. W ) -> ( u ( R |X. S ) <. B , C >. <-> ( u R B /\ u S C ) ) ) |
9 |
8
|
el3v1 |
|- ( ( B e. V /\ C e. W ) -> ( u ( R |X. S ) <. B , C >. <-> ( u R B /\ u S C ) ) ) |
10 |
|
brxrn |
|- ( ( u e. _V /\ D e. X /\ E e. Y ) -> ( u ( R |X. S ) <. D , E >. <-> ( u R D /\ u S E ) ) ) |
11 |
10
|
el3v1 |
|- ( ( D e. X /\ E e. Y ) -> ( u ( R |X. S ) <. D , E >. <-> ( u R D /\ u S E ) ) ) |
12 |
9 11
|
bi2anan9 |
|- ( ( ( B e. V /\ C e. W ) /\ ( D e. X /\ E e. Y ) ) -> ( ( u ( R |X. S ) <. B , C >. /\ u ( R |X. S ) <. D , E >. ) <-> ( ( u R B /\ u S C ) /\ ( u R D /\ u S E ) ) ) ) |
13 |
|
an2anr |
|- ( ( ( u R B /\ u S C ) /\ ( u R D /\ u S E ) ) <-> ( ( u S C /\ u R B ) /\ ( u S E /\ u R D ) ) ) |
14 |
12 13
|
bitrdi |
|- ( ( ( B e. V /\ C e. W ) /\ ( D e. X /\ E e. Y ) ) -> ( ( u ( R |X. S ) <. B , C >. /\ u ( R |X. S ) <. D , E >. ) <-> ( ( u S C /\ u R B ) /\ ( u S E /\ u R D ) ) ) ) |
15 |
14
|
rexbidv |
|- ( ( ( B e. V /\ C e. W ) /\ ( D e. X /\ E e. Y ) ) -> ( E. u e. A ( u ( R |X. S ) <. B , C >. /\ u ( R |X. S ) <. D , E >. ) <-> E. u e. A ( ( u S C /\ u R B ) /\ ( u S E /\ u R D ) ) ) ) |
16 |
7 15
|
syl5bb |
|- ( ( ( B e. V /\ C e. W ) /\ ( D e. X /\ E e. Y ) ) -> ( <. B , C >. ,~ ( ( R |X. S ) |` A ) <. D , E >. <-> E. u e. A ( ( u S C /\ u R B ) /\ ( u S E /\ u R D ) ) ) ) |
17 |
3 16
|
bitr3id |
|- ( ( ( B e. V /\ C e. W ) /\ ( D e. X /\ E e. Y ) ) -> ( <. B , C >. ,~ ( R |X. ( S |` A ) ) <. D , E >. <-> E. u e. A ( ( u S C /\ u R B ) /\ ( u S E /\ u R D ) ) ) ) |